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ABSTRACT 

The Abbotsford-Sumas aquifer is a shallow, unconfined aquifer in northern Whatcom 

County, WA and southern British Columbia, Canada that is contaminated with nitrates due to 

agricultural land use. Currently, conservation managers rely on Post-Harvest Soil Nitrate 

Tests (PHSNTs) to predict nitrate leaching potential to the aquifer. However, these tests have 

limitations as an assessment tool because of their inaccuracy. Therefore, US and Canadian 

government agencies are considering the NLEAP on STELLA (NLOS) leaching model as an 

additional tool for assessing nutrient management strategies. NLOS is an adaptation of the 

Nitrogen Leaching and Economic Analysis Package (NLEAP) model. I examined the 

applicability of the model by calibrating it to an agricultural field plot in southern British 

Columbia. NLOS was calibrated to an agricultural field in Agassiz, BC for this study, but I 

expect it will perform similarly in the Abbotsford-Sumas aquifer due to similar soil types and 

climatic conditions. 

NLOS incorporates fertilizer application events, climatic data, and soil properties, to 

simulate one-dimensional water flow and nitrogen fate and transport. Field data from a trial 

of silage corn located at the Pacific Agri-Foods Research Centre in Agassiz, BC (PARC 

Agassiz) was used to calibrate the model. Monthly sampling included soil, soil pore water, 

nitrous oxide emissions, and groundwater chemistry parameters. The field soil (a silt loam) 

was subjected to a nutrient loading and crop management scenario comparable to regional 

farming practices.  

The ability of NLOS to predict water and nitrate transport during seasonal precipitation 

events was examined by comparing simulations to monthly field data. NLOS was found to be 
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useful for predictions of soil nitrate and ammonium in the upper 12 inches of the soil profile, 

and nitrate leaching from the 36-inch depth. Model predictions accounted for 84% of the 

observed variability in nitrate leached from 24 to 36 inches deep. Simulated soil nitrate and 

ammonium in the upper 12 inches of the soil profile accounted for 84% and 87%, 

respectively, of the variability in the observed values. NLOS also produced adequate 

predictions of nitrate leaching from 12 to 24 inches deep (R2 = 0.63), and soil water from 0 to 

36 inches deep (average R2 for all layers = 0.52). Field observations and model simulations 

indicate that nutrients in the soil and soil pore water fluctuated in direct response to fertilizer 

applications, crop events, and precipitation. Although the model performed reasonably well, 

more frequent field data collection is recommended for further model calibration and 

validation.  

The calibrated model was also used to assess various nutrient-loading scenarios and to 

recommend the timing of the PHSNT. Hypothetical scenarios suggest that timing fertilizer 

application to rainfall events is the most effective way to reduce nitrate leaching. Field 

observations and model simulations also indicate that conducting the PHSNT concurrent 

with crop harvesting would provide the most accurate assessment of nitrate leaching 

potential. 
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1.0 INTRODUCTION 

From a public health standpoint, the protection of groundwater quality has become an important 

concern for many communities. More than half of the US uses groundwater for drinking water 

(Solley et al., 1993); and some rural communities use groundwater as their sole drinking water 

source (Hii et al., 1999). In 1990, Washington State withdrew between 200 and 500 million 

gallons of groundwater per day for public water supplies (http://water.usgs.gov). Nitrate is the 

most common nutrient in groundwater (Nolan and Stoner, 2000) and is the most ubiquitous 

groundwater contaminant in the world (Spalding and Exner, 1993). Nitrate poses a serious threat 

to public drinking water supplies because of the health risks related to nitrate consumption. Once 

ingested, nitrates are converted to nitrites that can react with hemoglobin in the blood, which 

decreases the capacity of the blood to transport oxygen (http://www.epa.gov/OGWDW/dwh/c-

ioc/nitrates.html). This potentially fatal condition, termed methemoglobinemia, is particularly 

acute in infants (http://www.emedicine.com/EMERG/topic313.htm). Long-term exposure to 

nitrate has the potential to cause diuresis, increased starchy deposits and hemorrhaging of the 

spleen in adults (http://www.epa.gov/OGWDW/dwh/c-ioc/nitrates.html) and also has been 

implicated as a carcinogen. The US Environmental Protection Agency (USEPA) has established 

a maximum contaminant level (MCL) of 10 mg nitrate as nitrogen per liter (mg NO3-N/L). 

Nitrate exceeded the MCL in 12 out of 25 residential drinking water wells during the 2002-2004 

monitoring study conducted in the Abbotsford-Sumas aquifer located in northwestern Whatcom 

County (Mitchell et al., 2005). 

Despite the implementation of Best Management Practices (BMPs) over the last two decades, 

nitrate levels continue to persist at levels exceeding the USEPA’s MCL in surface and 

groundwater in northwestern Washington (Mitchell et al., 2005). Shallow groundwater beneath 



 

 2 

agricultural land has the highest median nitrate concentration (Mitchell et al., 2005). The 

Abbotsford-Sumas aquifer is located in the lower Fraser and Nooksack River Valleys (Figure 1), 

a region dominated by intense agricultural activity. The high precipitation and irrigation in the 

area combined with the well-drained, thin soils (<6 feet), high aquifer permeability, and dense 

agricultural activity create a situation where surface contaminants readily interact with 

groundwater (Tesoriero and Voss, 1997). In addition, land use in southwestern British Columbia 

is also impacting water quality in the aquifer because groundwater flows to the south. This is 

problematic because the aquifer serves as a drinking water supply for rural residents and 

communities in both the US and Canada (Hii et al., 1999). In an effort to improve water quality, 

the State of Washington passed the Dairy Nutrient Management Act in 1998 requiring all dairy 

farms to develop and implement Dairy Nutrient Management Plans (DNMPs) by December 

2003.  

The identification of two possible sources of groundwater nitrate in northwestern 

Washington has made the assessment and implementation of management plans difficult. The 

highest nitrate levels (>20 NO3-N/L) occur in shallow wells (<25 ft) and lower nitrate levels, but 

still greater than the EPA MCL (>10 mg NO3-N/L), occur in deeper wells (>25 ft; Mitchell et al., 

2003; Mitchell et al., 2005). Agricultural sources in northwestern Washington were linked to 

nitrate in the shallow wells whereas agricultural sources in Canada were linked to the deep wells 

(Mitchell et al., 2003). This suggests that there is a nitrate overprint due to US sources on 

background levels of nitrate flowing south in the aquifer from Canada. Numerous studies 

conducted in the British Columbian portion of the Abbotsford-Sumas aquifer have reported 

nitrate concentrations exceeding the 10 mg NO3-N/L MCL (Hii et al., 1999; Liebscher et al., 

1992; Wassenaar, 1995; Zebarth et al., 1998). In order to effectively manage agronomic loading 
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in northwestern Washington, it is important that the proportions of nitrate entering the aquifer 

from Canadian and US sources are distinguishable.  

Numerous models have been developed to aid regulatory agencies and agricultural 

professionals with on-farm nutrient management with the goal of minimizing excessive nutrient 

loading. NLEAP is a one-dimensional (1-D) deterministic-numerical model that simulates 

nitrogen fate and transport in an agricultural soil. Most recently, the model has been translated 

from the original FORTRAN code to the STELLA environment and renamed NLEAP on 

STELLA (NLOS). NLOS employs the same mechanisms for nitrogen dynamics, crop growth, 

and water flux as the original NLEAP. The US Department of Agriculture Natural Resources 

Conservation Service (USDA NRCS), Whatcom Conservation District (WCD), and Agriculture 

Canada are considering NLOS as a tool that will assist in the distinction of nitrate sources 

entering the Abbotsford-Sumas aquifer.  

There are no published studies utilizing nitrate leaching models in this region. The majority 

of existing knowledge about the fate of nitrogen in agricultural soils comes from studies 

conducted in the southern, midwestern, and eastern US (Hermanson et al., 2000). Neither 

NLEAP nor NLOS has ever been tested for the climate, soil conditions, and cropping systems 

that are specific to the Pacific Northwest. Whether or not NLOS may provide useful predictions 

of soil nitrogen movement in this region needs to be evaluated. Of particular concern is the 

steady-state, tipping-bucket approach to soil water flux that NLOS utilizes, which may poorly 

simulate nitrate leaching under transient conditions. Soil water flux under transient conditions is 

typified by variable soil moisture, conductivity, and matric suction with time and depth in the 

soil. The variable intensity precipitation events that occur in this region induce non-steady soil 

moisture conditions in the field. A transient flow nitrate leaching model may better simulate 

nitrate leaching in this environment. In addition, the regional climate is typified by winter rainfall 
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and relatively cool night-time temperatures, both of which have an effect on the nitrogen cycle 

(Hermanson et al., 2000).  

The goal for this project was to calibrate NLOS to local conditions and then use the 

calibrated model to characterize the movement of water and nitrogen through the shallow vadose 

zone in response to precipitation events and agricultural nutrient loading and management. 

NLOS was also used to simulate predictions of nitrogen and water flux for a number of 

hypothetical scenarios and to recommend the optimal time for the post-harvest soil nitrate test. 

Finally, this study will provide a comprehensive data set, of which there are few, including many 

aspects of the nitrogen cycle (crop-N uptake, leaching, nitrous oxide emissions, and soil-N). 

Previous researchers have only focused on one or a few aspects of the nitrogen cycle 

(Hermanson et al., 2000). 

2.0 BACKGROUND 

2.1 Nitrogen Cycle 

The nitrogen pathways that are modeled by NLOS are detailed in this section. This discussion 

describes only the nitrogen gains, losses, or transformations that occur in upland, agricultural 

soils, and that are included in the model. Nitrogen enters the soil from natural sources, crop 

residues, amendments, irrigation, precipitation, run-on, and fertilizer or manure applications. 

Nitrogen on the soil surface is removed by denitrification, ammonium volatilization, runoff, or 

erosion. Once nitrogen infiltrates the soil, it is subject to leaching and crop uptake or one of the 

transformation processes described below (Shaffer and Ma, 2001). The nitrogen cycle is depicted 

in Figure 2 (taken from http://www.mda.state.mn.us). This figure depicts the nitrogen processes 

that are in the model with the exception of nitrogen fixation, which is shown but not included in 

the model. 
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Mineralization or ammonification 

In the mineralization (ammonification) process, aerobic and anaerobic microbes decompose 

nitrogen-containing residues from crops and soil amendments and soil organic matter to form 

ammonium and more stable forms of soil organic matter. Carbon dioxide gas is the primary by-

product, although, methane may be produced instead of carbon dioxide if anaerobic conditions 

exist. 

Immobilization 

Immobilization occurs when there is insufficient nitrogen in residues to meet the biomass growth 

needs of soil microbes. Under these conditions, the microbes temporarily resort to consumption 

of mineral soil nitrate and ammonium resulting in a net uptake, or immobilization, of these forms 

of nitrogen. This is the converse of the mineralization process. Immobilized nitrogen is not 

available for uptake by crops. When the microbes die and are recycled, the nitrogen is released 

back into the soil. 

Nitrification 

Nitrification is the microbially mediated conversion of ammonium to nitrate. This is a two-stage 

process where the ammonium is first converted to nitrite and then nitrite is converted to nitrate. 

The first stage is controlled by Nitrosomonas, and the second stage by Nitrobacter, both of which 

are aerobic autotrophic organisms. The conversion of nitrite to nitrous oxide and NOx 

greenhouse gases can occur as a by-product of this reaction. 

Denitrification 

Denitrification is the microbially mediated conversion of nitrate and nitrite to di-nitrogen gas, 

nitrous oxide, and NOx. Facultative anaerobic bacteria primarily mediate this process. 

Denitrification is enhanced by the following conditions: a large nitrate source, a fresh carbon 



 

 6 

source, Mn or Fe rich soils, warm temperatures, precipitation or irrigation, and temporary 

flooding. 

2.2 NLEAP On STELLA (NLOS) 

Dr. Shabtai Bittman and Derek Hunt (Research Technician) at PARC Agassiz are developing 

NLOS. Derek Hunt translated NLEAP from the original FORTRAN language using the icon-

based model building and simulation tool STELLA and renamed it NLOS. NLOS simulates the 

fate and transport of nitrogen in the soil profile, plant growth, and soil water movement at a field 

scale, at a daily time step for one calendar year. The core of the model simulates the flow of 

nitrate in three soil layers, organic decomposition and denitrification of nitrate, inputs and 

outputs, irrigation, and application of crop residues. There are also a series of sub-models that 

function as separate entities and focus on soil, crops and residues, manure, amendment and 

fertilizers, and other topics. Trials have been conducted with NLEAP data sets that show a good 

correlation between simulations produced with the NLEAP and NLOS (Shaffer et al., 2001).  

NLOS was designed as a tool for farmers, extension agencies, and regulatory agencies to use 

in making estimates of nitrate leaching potential under agricultural crops and the resulting effect 

on groundwater (Shaffer et al., 1991). In order to fully develop NLOS as a tool for regulatory 

purposes, the model must be calibrated to local conditions. NLEAP was developed and tested in 

the midwestern states where soils are typically poor to moderately well developed (e.g., Entisols 

and Mollisols) and annual precipitation is low (e.g., Chichester, 1977; Delgado, 1998; Delgado et 

al., 1998a; Delgado et al., 1998b; Delgado et al., 2005; Follett et al., 1994; Shaffer et al., 1991; 

Shaffer et al., 1994). These conditions are very different from northwest Washington, where soils 

are more developed (e.g., Spodosols and Alfisols) and annual precipitation is moderate to heavy. 

The seasonality of precipitation also differs in these regions, with the Midwest receiving most of 

its precipitation in the spring and early summer and the Pacific Northwest receiving most of its 
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precipitation during the late fall and winter months. Steady-state unsaturated flow ignores all 

complexities related to soil hydraulic properties, soil heterogeneities, preferential flow, surface 

ponding, upward water migration, lateral flow, and hysteresis. Calibrated testing of the model for 

local field conditions is necessary to determine whether or not this highly simplified approach is 

acceptable for determining nitrate available for leaching.  

NLOS has many qualities that have made it more appealing and tractable for regional 

development and implementation. Many modelers protect their source code by making it 

unavailable to the public. The NLEAP developer, M.J. Shaffer, freely shared his source code and 

his expertise with Dr. Bittman and Derek Hunt of Agriculture Canada. Access to the original 

FORTRAN code and to the model developer made it possible for Bittman and Hunt to recreate 

the model with STELLA. The graphical interface of the STELLA platform provides an 

innovative alternative to the “black box” approach by allowing users who are unfamiliar with 

programming languages to view or adapt the model structure. This makes the model flexible and 

user friendly. With STELLA, model developers may choose to modify and enhance existing 

models, thereby building on previous work and knowledge without “reinventing the wheel.” 

Bittman et al. (2001) cited these reasons as the impetus for choosing NLEAP and STELLA.  

2.3 Steady-state vs. Transient Flow and Transport 

Water flow close to the surface is a highly complex process due to the spatial heterogeneity of 

soil characteristics and soil moisture. Modeling the transient process of water flow and solute 

transport in field soils under natural conditions requires excessive input parameters and 

computational rigor. Assumptions are usually made to simplify the modeling process. It is 

debatable what simplifications are acceptable for various flow conditions. 

Vadose zone flow is, by definition, unsaturated and dominantly vertically downward. 

Therefore, I will present the 1-dimensional (vertically downward where z is elevation measured 
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positively downward) flow equation for transient, unsaturated conditions. The following 

assumptions apply to this flow scenario: homogeneous, isotropic, incompressible fluid, non-

deformable media, and air does not restrict water from filling void space. Under these conditions, 

Richards’s equation describes unsaturated transient flow:  
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where θ is water content, z is elevation, K is unsaturated hydraulic conductivity, and ψ is matric 

suction. Under transient conditions, the rate of change in water content, or water flow, varies 

with time and space according to the divergence of the flux due to the variation in matric suction 

and conductivity, which varies as a function of matric suction, with depth. Under steady-state 

unsaturated flow for the same scenario, matric suction and conductivity are uniform with depth; 

therefore, unsaturated water flow is constant. In areas with frequent rainfall, such as the winter 

months in the Pacific Northwest, constant wetting may produce nearly uniform saturation 

throughout the soil column. Under these conditions, a steady-state unsaturated flow equation 

may produce the best approximation of vadose zone flow. 

Numerous studies have been conducted to evaluate the effect of moisture content on 

transport parameters. These studies have shown dispersivity values, apparent distribution 

coefficients, and dispersion coefficients to increase, decrease, or remain unchanged with varying 

soil moisture contents (e.g., Corey et al., 1963; DeSmedt and Wierenga, 1984; Gamerdinger et 

al., 2001; Jardine et al., 1993; Maraqa et al., 1997; Maraqa et al., 1999; Seyfried and Rao, 1987). 

Hammel and Roth (1998) found that analytical approximations of asymptotic dispersivity are 

highly dependent on the degree of saturation. Many researchers have focused on processes 

occurring under saturated conditions or have used steady-state flow assumptions to simplify 

solute transport in the unsaturated zone (e.g., Bresler and Dagan, 1981; Butters and Jury, 1989; 
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Destouni and Cvetkovic, 1991; Jury, 1982; Small and Mular, 1987; van Genuchten and 

Wierenga, 1976). Studies comparing model results with and without these simplifying 

assumptions have led to contradictory conclusions about whether or not ignoring transient flow 

is justified. Wierenga (1977) found that predictions of solute transport based on transient flow 

were comparable to those based on steady-state flow if the breakthrough curve is presented as a 

function of cumulative drainage. Bresler and Dagan (1983) found that solute movement may be 

faster under transient conditions than under steady-state conditions for relatively homogeneous 

fields. A study by Russo et al. (1989) found contrasting results indicating solute movement may 

be faster with a steady-state flow model. Vanderborght et al. (2000) found that transient flow in a 

sandy loam could be approximated by a steady-state flow transport process when a solute 

penetration depth coordinate was used, but this process produced inconsistent results in a loam 

soil due to bypass flow and transport through macropores. Therefore, there is a need to determine 

whether or not a steady-state solute transport approach is applicable for the climatic conditions 

and soil types characteristic of this region.  

2.4 NLOS vs. Other Nitrate Leaching Models 

NLOS uses a simplified steady-state algorithm (tipping-bucket approach) to simulate water flow 

under saturated and unsaturated conditions. This approach uses even more simplifying 

assumptions than the steady-state flow equation described above and therefore deserves further 

scrutiny than a model employing the Richards’ equation for flow.  

NLOS uses an exponential expression involving the movement of water and various soil 

properties to simulate solute transport. These processes are implemented in the soil water sub-

model of NLOS. The following text, modified from “NLOS Documentation” by Derek Hunt, 

Shabtai Bittman, Lucy De Pieri, and Marvin J. Shaffer, details the concepts and algorithms 

involved in the soil water sub-model.  
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The soil water sub-model simulates the details of water movement affecting the overall 

nitrogen cycle. Water movement is simulated on a field scale with a daily time step by a simple 

set of mass balance equations computed for the water in each soil layer. The inputs and outputs 

in these mass balance equations are represented by a number of subroutines.  

Water enters the system through the first soil layer (L1) according to the following equation:  

Water in L1 = Precipitation + Irrigation + Snowmelt + Storage – Runoff (2) 

It is assumed that there is no resistance to the water flowing into L1. At this time there is no 

inclusion of a waterlogged soil with high water table that is restricting flow into L1. In frozen 

conditions (  

! 

T " 32
o
F ) there is no flow from the surface to layer 1.  

The water flowing out of the bottom of L1 (DP1) is expressed as:  

Water out L1 (DP1) = Water in L1- Evaporation – Transpiration – WHC – 

Bound water  (3) 

where DP1 is used to represent the water flowing from L1 to L2, WHC is the water holding 

capacity and bound water is the irreducible water content of L1. WHC is a misnomer as this 

parameter is actually representing the plant available water or plant available water holding 

capacity (Plant AWHC), which is the difference between the field capacity and the permanent 

wilting point and is considered to be the water available for use by plants (Dingman, 2002). Plant 

AWHC is a user-entered value and WHC is calculated as the product of the Plant AWHC and the 

soil layer thickness; therefore, WHC, as defined by this model, is the Plant AWHC converted to 

inches of water in the soil layer. Bound water is also a misnomer, as this term does not refer to 

the irreducible water content according to the traditional definition of water that cannot be 

removed with any decrease in capillary pressure, but rather it refers to the permanent wilting 

point (PWP). The PWP is the water content at which transpiration ceases and plants begin to wilt 
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(Dingman, 2002). PWP is a user-entered value. Bound water, as defined by this model, is the 

product of the PWP and the soil layer thickness.  

The water flowing into L2 is expressed as:  

Water in L2 = Water out L1 (DP1) + Initial water in L2  (4) 

The water flowing out of the bottom of L2 (DP2):  

Water out L2 (DP2) = Water in L2- Transpiration- WHC- Bound water  (5) 

Note that evaporation is assumed not to occur in L2. The expression for water flowing into L3 is 

similar to that for L2.  

The water flowing out of the bottom of L3 (DP3):  

Water out L3 (DP3) = Water in L3- WHC- Bound water  (6) 

Note that both evaporation and transpiration do not occur in L3. The water exiting the soil is 

termed Water Leached and is equal to Water out L3. In the absence of a third layer, the water 

leached is equal to the water out of L2.  

There are a number of nitrate leaching models that incorporate a more rigorous approach to 

soil water flow and solute transport. The Root Zone Water Quality Model (RZWQM) uses the 

Green-Ampt equation to simulate water movement during infiltration and the Richards equation 

during redistribution (Ahuja et al., 2000). Nitrogen, Tillage, and crop-Residue Management 

(NTRM) uses the Richards equation for water movement (Shaffer and Gupta, 1987) and the 

diffusion equation for solute transport (Shaffer, 1985). Crop Estimation Through Resource and 

Environment Synthesis (CERES) uses a relatively simple water balance similar to RZWQM 

where water redistribution is dependent upon water holding capacity and soil runoff is estimated 

using the USDA Soil Conservation Service (SCS) curve number (Ritchie, 1998). Additionally, 

the Erosion/Productivity Impact Calculator (EPIC; Williams, 1995), Groundwater Loading 

Effects of Agricultural Management Systems (GLEAMS; Leonard et al., 1987), CENTURY 
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(Parton et al., 1994), and NCSOIL (Molina et al., 1983) models primarily use water flow 

components based on draining excess water above field capacity, but some also include upward 

flow (EPIC & NCSOIL).  

2.5 Site Description 

The study site for this research is a 0.59-hectare plot at the Pacific Agri-Foods Research Centre 

located in Agassiz, B.C (about 60 miles east of Vancouver, BC). The field site is located on the 

northwest corner of the research centre at the base of Bear Mountain and is known as the Swine 

Plot or Field 19 (Figure 3). There are other experimental fields located to the northwest and 

southwest of Field 19.  

2.5.1 TOPOGRAPHY 

The research centre occupies a topographically flat valley bounded by Bear Mountain to the 

northeast, the Fraser River along the east and southern extent, and Mount Agassiz to the west 

(Figure 3). Gentle ridge-and-swale topography is evident upon visual inspection at the site and is 

consistent with the alluvial parent material.  

2.5.2 HYDROLOGY 

An irrigation ditch runs along the northwest side of the field and an overgrown creek runs along 

the southeast side. The site is underlain by a continuous unconfined aquifer that is comprised of 

Fraser River alluvial permeable sands and gravel. One piezometer is installed at approximately 

73 inches deep along the middle of each edge of the field. Groundwater levels were recorded 

with auto-recorders in the piezometers from November 1998 through March 2001. Using the 

piezometer locations and elevations I measured during this study, the groundwater flow direction 

averaged 167º from north during that time (Table 1). This suggests that the groundwater is 

generally flowing into the creek from the northwest (Figure 3).  
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2.5.3 CLIMATE 

The inshore maritime climate is predominantly cool and humid, characterized by mild winters 

and annual precipitation ranging from 39 to 67 inches (Patni et al., 2000). About two-thirds of 

the yearly precipitation occurs during the winter months of October through March, which can 

lead to drainage problems. The region receives about 3 feet of snow per year (Luttmerding and 

Sprout, 1967). The water table can range anywhere from 0 to greater than 73 inches below the 

surface. There are no data below about 73 inches because this is the maximum depth of the 

piezometers existing at the site. The depth to the water table was recorded at a minimum of about 

20 inches below the surface in December 1998 and flooding is known to occur at the site (Patni 

et al., 2000). Conversely, soil moisture deficiencies may occur during the summer months when 

rainfall is minimal (Luttmerding and Sprout, 1967). Rapid water table fluctuations of up to 39 

inches/week were observed in response to high precipitation from November 1998 to March 

1999 (Patni et al., 2000). After March, water table movement is influenced by rises in the nearby 

Fraser and Harrison Rivers, which tend to peak in May/June in response to spring snowmelt off 

the mountains (Patni et al., 2000). The coldest and warmest mean monthly temperatures recorded 

from 1974-2004 at the Agassiz CS weather station, located about 1500 ft from the study site, 

range from 32 to 42ºF in January and 55 to 75ºF in July as determined from Environment 

Canada's National Climate Archive (http://www.climate.weatheroffice.ec.gc.ca/). 

2.5.4 SOIL 

The field is situated on a silt loam of the Monroe series, which has been described as an 

Eluviated Eutric Brunisol (Canadian Soil Classification System) or a Eutrochrept (US Soil 

Classification System) of moderate to good drainage, derived from medium textured stone-free 

Fraser River deposits (Bittman et al., 1999; Kowalenko, 1991). The Canadian Soil Classification 

System does not quantify its soil drainage classes, but the USDA SCS definition of moderate 
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permeability is 0.59 to 2.0 in/hr (SCS, 1992). Eutric Brunisols are typified by no Ah or a thin Ah 

(<2 in), a Bm horizon with 100% base saturation (NaCl), and pH < 5.5 

(http://sis.agr.gc.ca/cansis/glossary/eutric_brunisol.html).  

2.5.5 SITE HISTORY 

Previous field research was conducted on Field 19. The field was planted with tall fescue and 

treated with hog manure for 3 years (1997-1999), which was applied with a variety of methods. 

During the hog manure study, the field was apportioned into forty test strips 10 to 16 feet wide 

by 112 feet long (Figure 4). These test strips were grouped into four replicates comprising ten 

test strips each. Within a replicate, each test strip was treated with a different fertilizer 

application method: Splashplate (2x rate), Splashplate (3x rate), Sleighfoot (2x rate), Fertilizer 

(3x), and a control. The field was left as bare ground from 1999 to May 2004 and was not tilled. 

The ground around the field was tilled and planted with grass in March 2004.  

Two of the test strips within each replicate from the previous study were chosen for use in this 

study. Initial soil data were analyzed to determine if there were any lasting effects from the 

previous treatments. 

Porous ceramic suction cup lysimeters were installed in 1998 at 24- and 36-inch depths in 

five of the test strips in each replicate. Water that is held in the soil pores at matric suctions less 

than the applied vacuum is drawn through the pores of the suction cup at the bottom end of the 

lysimeter and collects inside the hollow tubing. The lysimeters existing in the test strips chosen 

for this study were used to collect soil pore water.  

Soil pore water sampling conducted from November 1998 through September 1999 found a 

low potential for nitrate leaching in perennial forage fields with moderate to high annual rates of 

manure application (Patni et al., 2000). Patni et al. (2000) suggested that high precipitation and 

rapid water table movement diluted solute concentrations resulting in moderately low values of 
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nitrate nitrogen and that ammonium nitrogen is being immobilized or nitrified in the soil 

resulting in consistently low values (always < 0.1 mg NO3-N/L). Higher concentrations of nitrate 

nitrogen were measured in November-December (mostly < 10 mg NO3-N/L), directly following 

a flooding event, and in samples from the shallower lysimeters (24-inch depth).  

3.0 RESEARCH OBJECTIVES 

The impetus for this research is the need to determine nitrate leaching to groundwater in 

agricultural regions of Whatcom County. The underlying assumption is that the soil and climate 

conditions are similar enough throughout the Fraser Valley that the model will perform similarly 

in both Agassiz, BC, with a silt loam field soil, and in a silt loam in Whatcom County. The 

unique nature of the soils and variable intensity rainfall that commonly occurs in the Fraser 

Valley may create transient flow conditions in the vadose zone. Transient flow is typified by 

hysteretic infiltration, redistribution, and the shallow, highly fluctuating water table all of which 

create conditions unfavorable to steady-state flow simplifications. These factors become more 

important in the summer and early fall. In late fall and winter, when most leaching is thought to 

occur, heavy rainfall may saturate soils. For late fall and winter conditions, a simplistic steady-

state flow model may produce leaching concentrations closely matched to field conditions. 

Therefore, there is a definite need to better understand the nature of water flow in the vadose 

zone throughout the year in this region and to relate flow conditions to fertilizer application 

timing so that an appropriate model structure can be applied for predictions of nitrate leaching to 

the water table. This research attempted to add to the understanding of water flow and nitrate 

flux in the vadose zone below an agricultural field through the completion of the following 

research tasks. 
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Research Tasks: 

• Perform field investigations involving the combined monitoring of the sources, fate, and 

transport of nitrogen and water; 

• Test the sensitivity of nitrate-leached and water-leached predictions to variations in the 

input parameters and internal model parameters involved in the soil water sub-model 

algorithms; 

• Perform Monte Carlo simulations to determine the uncertainty in nitrate-leaching 

predictions; 

• Calibrate NLOS to local climatic conditions and a local agricultural soil (a silt loam 

belonging to the Monroe Series) under a nutrient loading and crop management scenario 

comparable to local farming practices; 

• Examine the ability of the soil water sub-model of NLOS to predict soil water and 

nitrogen fluxes during seasonal precipitation events by comparing model simulations to 

field observations; 

• Characterize the distribution, concentrations, and temporal patterns of water and nitrate 

leaching in response to precipitation, fertilizer application, and cropping events using 

model simulations and field observations; 

• Assess the impact of the steady-state model assumptions on nitrate and water transport 

simulations by comparing model simulations to field observations during both transient 

and steady-state flow conditions; 

• Determine the optimal time to perform the Post-Harvest Soil Nitrate Test (PHSNT); 

• Use the calibrated model to simulate nitrate leaching under various hypothetical 

fertilizer-application and cropping scenarios; 
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• Make recommendations about the applicability of NLOS in its current state of 

development for local predictions of nitrate transport through the vadose zone; 

• Recommend improvements to NLOS if model predictions poorly fit the observed data. 

4.0 METHODOLOGY 

4.1 Experimental Design 

This study was designed to measure and monitor the physical and chemical parameters required 

as inputs or delivered as outputs by NLOS (see Table 2 for a list of the required model inputs). 

Note that all data presented for this study are in English units, but the inputs required by the 

model use a mix of English and metric units. Designing the field study to match the model 

outputs allowed for direct comparison of field measurements to model simulations. It is 

impossible to measure all parameters, but this study attempted to quantify nitrogen 

concentrations at each stage of the nitrogen cycle incorporated in NLOS (Figure 2) and to track 

the flow of nitrogen and water through the upper four feet of the soil profile. Field data collection 

began on March 24, 2004 and ceased on April 26, 2005.  

4.1.1 FIELD SET-UP 

The field site set-up is shown in Figure 5. I chose to locate the sampling equipment in two 

adjacent test strips in each replicate. Each test strip includes two pairs of lysimeters at 24- and 

36-inch depths, installed in 1998, and was treated with either the Splashplate (2x rate) or 

Splashplate (3x rate) during the previous study. “Splashplate” is another term for the broadcast 

application of manure and the rate refers to the amount of swine manure that was being applied. 

From now on, I will refer to the chosen test strips as Plot 1 or Plot 2. Each plot, 1 or 2, may have 

received either the Splashplate (2x rate) or the Splashplate (3x rate) treatment. Each of the four 
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replicates has a Plot 1 and a Plot 2; therefore, there are a total of 8 plots and 16 lysimeters being 

used in this study. The lysimeters were used to sample soil pore water for nitrogen analyses.  

One piezometer had been installed in the middle of each perimeter side of the field in 

October 1998 at the following depths (in): S-1 at 67.0, S-2 at 57.0, S-3 at 72.5, and S-4 at 56.5. 

The piezometers were used to sample groundwater for nitrogen analyses and to measure the 

depth to the groundwater table. Soil pore water and groundwater nitrogen concentrations were 

used to examine nitrogen flux and for comparison to simulated values of nitrate leached.  

On May 20, 2004, eight 28 in x 28 in x 6-in deep aluminum collars with lids, or chambers, 

were installed adjacent to the lysimeters. The chambers were used to collect gaseous emissions 

from the soil surface for analysis of nitrous oxide flux and for comparison to simulated values of 

nitrification to nitrous oxide.  

Composite soil samples were collected from random locations throughout the plots. Soil 

samples were analyzed for moisture and nitrogen as well as a number of physical and chemical 

soil properties required as model inputs. Soil nitrogen concentrations were used to examine 

nitrogen flux and transformations and for comparison to simulated values of soil nitrate and 

ammonium.  

During August 2004, one PVC tube was installed to a 39-in depth in each replicate for 

collection of soil moisture data with a soil conductance probe (described later). These data were 

not used for reasons discussed in the soil moisture measurements section. Tensiometers were 

installed in May 2004 in order to measure soil suction- a proxy for soil moisture. The 

tensiometers were removed during the study due to irreparable damage from bears and coyotes 

and the data were unused. Only the soil moisture data collected from the composite soil samples 

were used to examine soil water flux and for comparison to simulated values of soil water. 
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The field was planted with silage corn using a no-till method in May 2004 and side-dressed 

with triple superphosphate (0-45-0). Two commercial fertilizers, 18-18-18 (Triple 18) and 

ammonium nitrate, were uniformly applied throughout the field at 495 lbs/acre and 259 lbs/acre, 

respectively, for a total of 178 lbs-N/acre (see Table 3 for details of all crop events). Triple 18 

contains 18% each of nitrogen (from organic and inorganic sources), phosphorus, and potassium 

and ammonium nitrate contains 34.5% nitrogen. Agriculture Canada staff determined all 

fertilizer applications and crop management decisions in accordance with local farming 

practices. The field did not receive any water as irrigation during the previous study, nor did it 

throughout the duration of the study.  

4.1.2 FIELD DATA COLLECTION 

In this section I describe the frequency and type of field data collected. The sampling and 

analysis methods are described in detail in the following sections. I collected initial soil and soil 

pore water samples in March 2004 in order to determine background conditions before any 

fertilizer was applied and before the corn was planted. These initial soil samples were analyzed 

for moisture, nitrate, ammonium, cation exchange capacity (CEC), organic matter content, the 

C:N ratio of the organic matter, and coarse fragment percentage. The soil pore water samples 

were analyzed for nitrate and ammonium. Monthly sampling began in May 2004 and continued 

through April 2005. Two or three consecutive days were required each month for the collection 

of all field samples and measurements and the upkeep of field equipment. Monthly soil samples 

were analyzed for nitrate, ammonium, and moisture; monthly soil pore water samples were 

analyzed for nitrate, ammonium, and pH. Nitrous oxide sampling began on May 20, 2004, the 

day after the application of the fertilizers. In May, nitrous oxide sampling was conducted for 2 

consecutive days per week for 3 weeks directly following fertilizer application. After that initial 

period, sampling was conducted twice a day for 2 consecutive days each month. Depth to water 
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measurements were performed and groundwater samples were collected from the piezometers 

once a month, when water was available. Tensiometers were installed in May 2004 and sampled 

monthly through September 2004. Soil moisture measurements were collected using the Diviner 

2000 soil conductance probe at least once each sampling day, when weather conditions were 

favorable, from August 2004 through April 2005. The Agricultural Research Centre collected 

nitrogen concentration, moisture, and dry matter yield data for the corn crop. 

4.1.3 ADDITIONAL DATA REQUIRED AS MODEL INPUTS 

Daily temperature and precipitation data from the Agassiz CS weather station (located at lat: 

49.25, long: -121.77, elevation: 49 feet), which is located on the Pacific Agri-Foods Research 

Centre about 1500 feet from the study site, were downloaded from Environment Canada's 

National Climate Archive (http://www.climate.weatheroffice.ec.gc.ca/). Hourly temperature and 

humidity data were also accessed from the above source for use in nitrous oxide emission 

determinations (discussed below). Evapotranspiration data from the same station were 

unavailable from Environment Canada, but accessed instead from www.farmwest.com, which 

uses the Penman-Monteith model for evapotranspiration.  

The following data were obtained from the Agassiz soil survey for a Monroe series soil 

(Luttmerding and Sprout, 1967): soil drainage classification, percent slope, and landscape 

position (see Table 2 for a description of all model input values). The plant available water 

holding capacity and permanent wilting point are average values for a silt loam according to 

Brady (1974). 

4.2 Bulk Density Determination and Usage 

Methods to measure bulk density are labor intensive and time-consuming; therefore, existing 

bulk density values from a previous investigation conducted at PARC Agassiz were obtained 
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from Derek Hunt. Bulk density values collected in May and July 1997 from a field site adjacent 

to mine, were used to determine average bulk density values for each user-defined model soil 

layer. The bulk density values from the depths that overlapped with or were closest to the 

predetermined soil layer depth ranges were averaged and assigned to that soil layer. These depths 

and the average bulk density values for each soil layer are shown in Table 4. 

Soil bulk density measurements are required as inputs for the NLOS model. The model first 

adjusts the bulk density (BD) to account for the bulk density of soil excluding the coarse 

fragments (Corse_Frag_%). BD is then used to determine the porosity of the soil layer (POR), 

excluding the coarse fragments, in inches of water using an assumed particle density of 2.65 

g/cm3. Note that the user may alter all algorithms within NLOS. The particle density used in the 

following equation changed during the calibration process. 

BD = Bulk_Density * (1 - (Coarse_Frag_%/100)) (7) 

POR = (1-(BD/2.65))*Soil_Thickness (8) 

I used the soil bulk density to convert the gravimetric soil moisture measurements obtained 

from the oven-dried soil to volumetric soil moisture according to the following equation: 

Vol. moisture = Grav. Moisture * Bulk density (9) 

which was then used to determine soil water in inches: 

Vol. moisture * Soil Thickness (inches) = Soil Water (inches) (10) 

Finally, bulk density was used to convert measurements of soil nitrate and ammonium from 

µg/L to lbs/acre according to the equation 16 detailed in the Unit Conversion Equations section. 
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4.3 Field Methods 

4.3.1 SOIL SAMPLING 

Soil cores were collected using a push-probe soil core sampler to the following depth ranges: 0-

6, 6-12, 12-24, 24-36, and 36-45 inches. When fully extended, the sampler could only access soil 

to the 45-inch depth. The push-probe soil core sampler is a 1-inch diameter extendable hollow 

metal tube connected to a t-bar handle with foot pedals on each side (Figure 6). The sampler is 

pushed into the soil by stepping on the pedals and then retracted by pulling up on the handle. The 

sample cavity is 12 inches long; therefore, multiple cores were extracted from the same hole in 

12-inch increments up to a 45-in depth. Soil samples from two randomly selected locations 

within each plot were combined into composite samples for each depth. No soil cores were 

collected within an approximately 5-foot radius of the lysimeters to avoid creating preferential 

flow pathways to the lysimeter cups. The 5-foot radius was estimated to be a sufficient distance 

based on the placement on the lysimeters in the unsaturated zone where flow is dominantly 

vertical. No measurements were made to confirm this estimate. Loose composite samples were 

collected in plastic bags and transported on ice. 

4.3.2 WATER SAMPLING 

Combined groundwater and soil pore water samples for nitrate and ammonium were collected in 

125-ml 2N hydrochloric acid-washed Nalgene bottles and transported to the laboratory on ice 

(see Table A1 for sample container, storage, and holding times). Sub-samples were taken from 

the regular monthly shallow lysimeter samples for pH on November 17, 2004. Soil pH is a 

required model input and is used to determine the volatilization rate. Measurements of soil water 

pH from lysimeter samples are an acceptable substitute to measuring the pH of soil extract.  

I used a peristaltic pump to collect groundwater from the piezometers and a hand pump to 

apply a vacuum and to collect soil pore water from the lysimeters. A diagram of the lysimeter 
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set-up is shown in Figure 7. The piezometers were sampled simply by inserting the peristaltic 

pump tubing below the water surface inside the piezometer and pumping water up to the surface 

for collection. A vacuum of approximately 60 psi was applied to the lysimeters. They were left in 

this primed state overnight and then sampled the next day. The e-flask used for sample collection 

was rinsed 3 times with deionized water between each sample collected. Due to the low volumes 

of water available in the lysimeters, the tubing and e-flask were only rinsed once with water 

suctioned from the lysimeters before the sample was collected. The set-up was rinsed three times 

with water suctioned from the piezometers before the sample was collected. Water samples were 

collected from the lysimeters and piezometers once a month, when water was available. 

The lysimeters were inspected at the start of each sampling session for tampering by animals. 

A number of times the rubber stoppers had been removed or the plastic tubing chewed. When the 

lysimeters were left open to the elements, soil, insects, and other debris accumulated inside the 

lysimeter. When this occurred, the lysimeters were flushed multiple times with deionized water 

and scrubbed with a bottle brush on a long handle. The peristaltic pump was used to extract all 

the debris and rinse water and new tubing and stoppers were installed as necessary. No similar 

problems were encountered with the piezometers. 

4.3.3 NITROUS OXIDE SAMPLING 

Air samples were collected from non-steady-state, non-flow-through, about 2050 in3 in total 

volume, vented chambers of for determination of nitrous oxide emission rates (Figure 8). A 

water seal was used to get an airtight connection between the vented, insulated covers and the 

aluminum collars. Ten-milliliter air samples were collected from the chambers at 0, 15, 30, and 

45 minutes using pre-evacuated tubes with two-way needle valves. The chamber volume was 

measured three times during the study period; the average volume for each chamber was then 

used in the nitrous oxide flux calculation. 
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Chamber performance and gas emission rates can be affected by a number of factors 

including soil and air temperatures and moisture and soil nutrient concentrations. Therefore, 

hourly temperature and humidity data were retrieved from the Agassiz CS weather station for the 

sampling periods, soil temperature was measured, and soil nutrient and moisture samples were 

collected concurrently with nitrous oxide sampling. Prior to collecting the first sample of the 45-

minute cycle, soil temperature was measured at a 6-in depth at three randomly distributed points 

adjacent to each chamber. Soil samples for moisture and nitrogen analysis were also collected 

every day that nitrous oxide sampling occurred. If the nitrous oxide sampling coincided with the 

regular monthly soil sampling, no additional soil samples were collected. Otherwise, composite 

samples of four 0-6 inch deep cores were collected adjacent to, but no closer than a foot away 

from, the nitrous oxide chambers.  

4.3.4 SOIL MOISTURE MEASUREMENTS 

In addition to the soil samples collected for gravimetric soil moisture, volumetric soil moisture 

was also measured in situ using a Diviner 2000 (Sentek Environmental Technologies, Stepney, 

South Australia) soil conductance probe. Soil moisture measurements were made on each 

sampling day as weather and time permitted, but at least once per month. Measurements were 

not performed during heavy rainfall, as water entering the tubing would cause measurement 

errors. The probe was calibrated to ambient air moisture in the laboratory on each sampling day. 

On October 27, 2004 soil samples for gravimetric moisture analysis were collected from the soil 

conductance sampling depths for comparison to the Diviner 2000 soil moisture measurements. 

Soil samples were collected within a few feet of the probe sampling well. A comparison of the 

moisture values determined from the two methods is shown in Figure 9. Soil moisture 

measurements from the two methods are poorly matched and show no discernable trend with 

depth or by method. The maximum absolute difference between volumetric moisture estimates at 
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one depth was 9.9% and the average absolute difference was 4.3%. Considering this difference 

and that the probe was never calibrated to the field soil, the conductance probe moisture data 

were considered inaccurate and were not used in the model calibration. 

At the beginning of each sampling day, conductance readings were collected in the 

laboratory in a dry, sealed, normalization tube. These measurements were performed in order to 

normalize the sensor to ambient air. These normalization readings allow one to standardize the 

sensor readings. Prior to sampling in the field, each tube was inspected for any standing water or 

condensation. To collect soil moisture data, the soil conductance probe was inserted into the 39-

inch deep PVC tubing that was installed in the field for this purpose, and slowly withdrawn as 

data points were collected every 4 inches. This procedure was repeated three times consecutively 

and the three measurements were averaged for that site and day. The measurement depths were 

corrected during data post-processing if the instrument probe zero depth measuring point did not 

match up with the ground surface when the probe was inserted in the tubing. 

4.3.5 DEPTH TO WATER MEASUREMENTS 

Depth to water measurements were performed in the piezometers when water was available. An 

electrical sounding tape was used to measure the distance from the top of the PVC tubing to the 

water surface. The length of the PVC tubing protruding from the ground surface was then 

subtracted from the depth to water measurements to determine the depth to water below the 

ground surface.  

4.4 Groundwater Flow Direction Determination 

At the outset of this study, I measured the locations (WGS84 UTM) and elevations (meters 

AMSL) to the measuring point (the top lip of the PVC tubing) of each piezometer using a hand-

held Magellan GPS unit. Note that the error associated with handheld GPS measurements can be 



 

 26 

on the order of 150-650 feet; therefore, absolute elevations were not used in this study. I 

compared the relative elevation measurements made at each piezometer in the hydraulic gradient 

calculation. When water was available in the piezometers, I measured the depth to water from 

the measuring point. Depth to water measurements were recorded in all piezometers on only 6 

sampling days. I also calculated the average water level elevations recorded during the previous 

study on the field site from 1998-2001. Using the depth to water (DTW) measurements and the 

measured elevations to the measuring points (MP), I calculated the water surface elevation, or 

head (all values are in feet) using the following equation: 

MP elevation – DTW = Water Surface elevation (11) 

Using the northings and eastings and the calculated water surface elevation for each of the four 

piezometers, I calculated a groundwater flow gradient and flow direction using the EPA on-line 

tool for calculating gradients by fitting a plane to up to as many as fifteen points 

(http://www.epa.gov/Athens/learn2model/part-two/onsite/gradient4plus-ns.htm). The 

groundwater flow direction was used to determine which piezometers were located up-gradient 

vs. down-gradient. This information was used to distinguish nitrogen loading from the field site 

from background levels.  

4.5 Analytical Methods 

In this section I detail only the sample preparation, laboratory analyses, and calculations that I 

performed. Details of the analyses conducted by other institutions will not be provided. The 

quality control measures used for sample analysis are detailed in Appendix A. 
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4.5.1 SOIL ANALYSES 

Gravimetric moisture 

The monthly composite soil samples were well mixed and then a sub-sample was removed for 

soil moisture. Soil samples that could not be weighed and dried immediately were refrigerated. 

The sample was then weighed, dried for at least 16 hours at 105ºC, and then reweighed to 

determine the percent moisture content (ASTM, 1995). The moisture content was calculated as 

follows:  

Moisture Content, % = [(A-B)x100]/A  (12) 

where A is the fresh weight (g) and B is the oven-dried weight (g). 

Soil nutrient extractions 

The monthly composite soil samples were well mixed and then a sub-sample was removed for 

soil nutrients. Soil samples that could not be weighed and dried immediately were refrigerated. 

Soil samples for nutrient analysis were not refrigerated for greater than 24 hours. The sample 

was then weighed and then set out to air dry for at least two weeks, or until a dry state (based on 

the criteria described below) was achieved, in a humidity controlled (<10% relative humidity) 

soil drying room located at PARC Agassiz.  

Ideally, soil samples for inorganic nitrogen analysis should be analyzed immediately, but that 

was not logistically possible for this study. Air-drying can lead to small, but significant increases 

in NH4
+-N (Nelson and Bremner, 1972). The air-drying procedure employed by PARC Agassiz 

takes the following precautions to reduce the impact of samples storage on ammonium values: 

stored in a NH3-free atmosphere, samples are enclosed in a room specifically for soil drying and 

then bagged in plastic before being transported or shelved for long-term storage, soil is not dried 

at an elevated temperature (the drying room is kept at room temperature), and the drying room is 

humidity controlled. No specific procedure exists for air-drying soil samples, but known 
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precautions were observed. The drying time was arbitrarily chosen based on the prior knowledge 

of the time required (Hunt, D.E., personal communication), under the conditions present in the 

laboratory soil drying room, to dry the soil types collected from the test fields on the research 

centre. Since the condition of being dry for a soil is an arbitrarily determined state (Black et al., 

1965), for the purposes of this research completely air-dried soil is defined as a soil that appears 

dry to the touch and easily disaggregates or crumbles when ground. Two weeks of air-drying 

time was sufficient to reach this state.  

Once the nutrient samples had completely air-dried, PARC Agassiz staff then reweighed and 

bagged each sample. These dried and weighed samples were temporarily stored at the research 

centre until I was ready to analyze them for nitrate and ammonium. At that point, I transported 

the samples to Western Washington University (WWU) where I ground the samples with a 

rolling pin and sieved them through a 2.0 mm sieve in preparation for KCl extraction. KCl 

extractions were performed according to the methodology described on page 648-649 of 

Methods of Soil Analysis (Page et al., 1982). The KCl extract was then filtered through 0.45-

micron 2 N hydrochloric acid- soaked filter and preserved with sulfuric acid to a pH of 2. Nitrate 

and ammonium were then analyzed at the Institute for Watershed Studies (IWS) laboratory (a 

Washington State Department of Ecology Accredited laboratory, Accreditation #A006). IWS 

follows standard operating procedures adapted from APHA (1998) for all analytical work (see 

Table A2). 

Organic matter 

A sub-sample of the initial composite soil samples collected in March 2004 from the 0-6 and 6-

12 inch depths were analyzed to determine the C:N ratio of the organic matter. Sample 

preparation for C:N ratio analysis included weighing, air-drying, roller-grinding, and sieving to 

separate the fine fraction (<2 mm diameter). The fine fraction of the samples was then 
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transported to the University of Washington Analytical Center where they were analyzed for 

percent carbon and percent nitrogen using a Perkin Elmer CHN Analyzer 2400 Model. These 

data were then used to calculate the C:N ratio of the organic matter:  

C:N ratio = %C/%N (13) 

An additional sub-sample of the initial composite soil samples from the 0-6 and 6-12 inch 

depths were analyzed for organic matter content. The organic matter samples were weighed, 

oven-dried at 105º C, and analyzed in the WWU Geology Geomorphology Laboratory. The ash 

content was determined by burning the oven-dried samples in a muffle furnace at 440ºC until a 

constant mass was achieved (ASTM, 1995). The ash content was then used to calculate the 

amount of organic matter, as follows:  

Organic matter, % = 100.0 – ash content, % (14) 

Coarse fragment percentage 

Sub-samples from the initial composite soil samples from all depths were analyzed for soil 

coarse fragment percentage. Oven-dried samples were weighed, roller-ground and sieved 

through a 2.0 mm diameter sieve. The sample portion >2.0 mm was then weighed and the coarse 

fragment percentage calculated as follows: 

Coarse fragment, % = [(A/B)x100] (15) 

where A is the weight of the sample portion >2.0 mm (g) and B is the weight of the total sample 

(g).  

Cation exchange capacity 

One large composite soil sample was created by mixing sub-samples of the oven-dried initial 

composite soil samples from all depths for cation exchange capacity (CEC) analysis. Avocet 
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Environmental Laboratories in Bellingham then analyzed the composite sample for CEC using 

EPA method 9081 (sodium acetate). 

4.5.2 WATER ANALYSES 

Combined water samples were collected for nitrate and ammonium analysis. After collection, the 

samples were filtered the same day at the IWS Water Quality Laboratory with a 0.45-micron 2 N 

hydrochloric acid- soaked filter and preserved with sulfuric acid to a pH of 2. The samples were 

then refrigerated until analysis. See Table A1 for sample handling and storage procedures. Sub-

samples were taken from the combined water samples, before filtration and preservation, for pH 

measurements. These measurements were performed immediately after arriving in the laboratory 

from the field. All water samples were analyzed at the IWS laboratory (see Table A2). The IWS 

laboratory historically has obtained more accurate pH results from its laboratory meter than from 

the available field meters; therefore, the laboratory meter was used in this study. 

4.5.3 NITROUS OXIDE ANALYSIS 

Nitrous oxide was analyzed at the PARC Agassiz laboratories. Samples were analyzed using a 

Varian Gas Chromatograph equipped with a 63Ni electron capture detector. The slope of 

increasing nitrous oxide with time was calculated from the successive samples that were 

collected from the closed chamber at 0, 15, 30, and 45 minutes. The Ideal Gas Law was then 

used to calculate a flux using the calculated slope, the ambient air temperature and pressure, and 

the average volume of the chamber. This process determines the nitrous oxide emission rate in g-

N2O-N/ha/day. 
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4.5.4 CROP ANALYSES 

Crop moisture, crop yield, and crop nitrogen % were analyzed at the PARC Agassiz laboratories. 

Derek Hunt summarized and averaged the data to determine the precise input values needed for 

the model.  

4.6 Statistical Methods 

Statistical analyses were performed on the data from the initial soil and water samples collected 

in March 2004. The initial data set consists of values of nitrate and ammonium in soil, soil pore 

water, and groundwater, and the following soil conditions: moisture, organic matter, coarse 

fragment percentage, and carbon to nitrogen ratio. These data were collected before the initiation 

of any agricultural activity on the field for this project. The purpose of the statistical analysis was 

to determine whether or not there were significant differences in any of the above-mentioned 

values with depth in the soil profile, location in the field, or due to the potentially lasting effects 

of differing manure treatment methods employed during the previous study conducted on the 

field site. The statistical results were used to determine how and if the initial model input values 

should be segregated based on depth, location, or previous treatment method. 

Exploratory statistical analyses were performed first to examine trends in the data and to 

visually assess relationships between variables that might warrant further analysis with 

confirmatory statistical methods. The statistical software R was used to generate summary 

statistics, which consist of the maximum, minimum, mean, and median, for each parameter in the 

data set. Summary statistics are provided in Table 5. R was then used to generate a number of 

notched boxplots and scatterplots in order to visually examine the relationships between each 

parameter and depth, location, or previous treatment method (i.e., Splashplate (2x) or Splashplate 

(3x), which are represented as 2 and 3 on the figures; Figures 10-19). R was also used to conduct 

the confirmatory and pairwise tests described below.  
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The exploratory statistics results indicated which confirmatory analyses were appropriate. 

Where the notched boxplots showed no overlap in the group means for multiple depths, 

locations, or previous treatment methods, a Kruskal Wallis Rank Sums Test was used in order to 

determine if the population distributions were significantly different. The Kruskal Wallis Rank 

Sums Test is a non-parametric generalization of the two-sample Student T-Test applicable to 

multiple populations. Non-parametric tests allow you to avoid issues of normality and 

homogeneity (http://mathworld.wolfram.com/). The Kruskal Wallis Ranks Sums Test is an 

Analysis of Variance (ANOVA) significance test that determines differences between population 

distributions for k populations. The null hypothesis is that the k population distributions are 

identical. The null hypothesis of no difference between populations is rejected for p-values less 

than 0.05. At this acceptance level, the probability of a Type I error (erroneously rejecting the 

null hypothesis) is only 5%. If the null hypothesis is rejected, the alternative hypothesis that at 

least two populations differ is accepted. The following assumptions, taken from 

http://www.statsdirect.com, must be met for the Kruskal Wallis Rank Sums Test: 

• random samples from populations 

• independence within each sample 

• mutual independence among samples 

• measurement scale is at least ordinal  

• either k population distribution functions are identical, or else some of the populations 

tend to yield larger group means than other populations 

The non-parametric Kruskal Wallis Rank Sums Test was used since the sample sizes were small 

and the data met the assumptions listed above. 

Rejection of the null hypothesis for the Kruskal Wallis Rank Sums Test indicates that there 

were differences between at least two of the population distributions. Pairwise testing indicates 
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which population distributions differed. The Pairwise Wilcoxon Rank Sums Test is a non-

parametric generalization of the Paired Student T-Test applicable to multiple populations. The 

Holm adjustment was used to expand the test to multiple populations. The test assumes that there 

are n paired observations of the form (Xi, Yi). The null hypothesis is that the population 

distributions for the X’s and Y’s are identical. The null hypothesis of no difference between X’s 

and Y’s is accepted for p-values less than 0.05. If the null hypothesis is rejected, the alternative 

hypothesis that the two populations differ in location is accepted. The following assumptions, 

taken from http://www.statsdirect.com, must be met for the Pairwise Wilcoxon Rank Sums Test 

(Di are the ranks of the positive, non-zero differences between a pair of samples): 

• distribution of each Di is symmetrical 

• all Di are mutually independent 

• all Di have the same median 

• measurement scale of Di is at least interval 

The non-parametric Pairwise Wilcoxon Rank Sums Test was used since the data met the 

assumptions listed above and the Wilcoxon Rank Sums Test indicated significant differences 

between data populations. 

4.7 Modeling Methods 

Once the field samples were collected and analyzed, I determined the base model inputs and 

began simulations for the sensitivity analysis. The sensitivity analysis results focused the 

calibration on the input parameters that had the largest impact on water and nitrate leached 

predictions. The model was calibrated to the field measurements of nitrate and ammonium in soil 

and soil pore water, nitrous oxide, and soil water. The calibrated model was then used to 

determine the fate of nitrogen and water during various hypothetical scenarios and to recommend 

the optimal time for performing the post-harvest soil nitrate test (PHSNT).  
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4.7.1 NLOS MODEL SET-UP 

All simulations were conducted over a 399-day period from March 24, 2004, when the initial 

samples were collected, to the last sampling day on April 26, 2005. The model uses Julian dates; 

therefore, to maintain a continuous simulation period, January 1, 2004 was designated as day one 

and days 84 (March 24, 2004) through day 482 (April 26, 2005) were designated as the 

simulation period.  

Model inputs were derived from the field data, historical data collected on a nearby field, the 

Agassiz soil survey (Luttmerding and Sprout, 1967), and from published sources of typical 

values for silt loams (see Table 2 for all model inputs and the sources). The model allows the 

user to specify soil layer thicknesses, for up to four soil layers (one surface layer and up to three 

sub-surface layers), with certain restrictions. I collected soil, soil pore water, and soil moisture at 

varying depths within the field. Using the depths at which I had collected samples and a number 

of other factors as a guide, I designated three soil layers, in addition to a 1-inch surface layer 

(LS), for which the model considers separate processes but includes in the total thickness of soil 

layer 1. See the next section for a description of the soil layer determination. Soil layer 1 (L1) 

spans 0-12 inches, L2 from 12-36, and L3 from 36-45. Once the soil layer thicknesses for 

modeling purposes were determined, I averaged the initial and daily field data from the five soil 

layers sampled into three soil layers. The data for these three layers was then averaged for the 

two plots within each replicate and then for the four replicates to obtain average values for the 

entire study area. Supporting evidence for the data averaging methods is provided in the 

Statistical Results section. 

The final step was to prepare the field data for comparison to the model simulations by 

converting the field data measurement units to match the units used by the model. Ammonium 

and nitrate concentrations from lysimeter samples and soil extractions had to be converted from 
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µg-N/L to lbs-N/acre; the gravimetric soil moisture fractions had to be converted first to 

volumetric fractions, and then all the volumetric fractions to inches of water by soil layer. The 

unit conversion equations are shown in the Unit Conversion Equations section.  

Soil Layer Determination 

The depths in the soil column at which I was able to collect soil and soil water solution samples 

were constrained by the available soil sampling equipment and existing lysimeter depths: 24 and 

36 inches. The depth at which I could collect soil samples was flexible from 0-45 inches. I chose 

to sample soil at the depths suggested by existing Pacific Agri-Foods Research Centre sampling 

protocol: 6, 12, 24, 36, and 45 inches. The Diviner 2000 soil conductance probe likewise had 

some flexibility in the increments of measure up to the maximum depth of 39 inches. I sampled 

in the smallest increment provided by the instrument: 4 inches. The strategy behind these 

sampling depths was that the resolution of the samples could always be reduced later by 

averaging data for multiple soil depths. That is what I eventually did when I decided on where to 

make the breaks for the user-defined soil layers used in the model. 

All depths were first converted to inches and then the overlaps between the sampling depths 

for the multiple sample types were determined. Using a combination of the model default depth 

for soil layer 1 (12 inches), the maximum crop rooting depth of 24 inches (Hunt, D.E., personal 

communication), and the maximum sampling depth (45 inches), I defined three soil layers with 

the following depths: soil layer 1, 0-12 inches, soil layer 2, 12-24 inches, and soil layer 3, 24-45 

inches. Note that with these soil layer designations, the leached nitrate values measured in soil 

solution samples from the 24-inch lysimeter are more accurately compared to the model 

simulated values of nitrate leached from L2, L2 terminates at the 24-inch depth, than the 

comparison of nitrate leached from L3 (45 inches) to the 36-inch lysimeter samples. There was 

no direct comparison for the 36-inch lysimeter samples. Soil layer 3 was originally determined to 
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terminate as close as possible to the piezometer sampling depths. After the soil layer 

determination was made, I decided not to include the piezometer data in the analysis. In 

retrospect, 36 inches would have been a better termination depth for L3 for better comparison to 

the 36-inch deep lysimeter, but there was too much work built into the original soil layer 

determinations to change the layer thicknesses once the decision was made not to use the 

piezometer data.  

Unit Conversion Equations 

The model simulates all nitrogen pools in lbs-N/acre. In order to compare the observed values of 

nitrate and ammonium in the soil extracts and lysimeter samples to simulated values of nitrate 

and ammonium in the soil and leachate, the observed data were converted. The measured 

concentrations of nitrate and ammonium in the extract and lysimeter water were converted from 

µg-N/L to lbs-N/acre. I was unable to locate any equations for converting from µg/L to lbs/acre 

that did not make oversimplifying assumptions for bulk density or soil thickness; therefore, I 

derived conversion equations specific to the analytic work and field samples. Observed 

gravimetric soil moisture was also converted for comparison to simulated soil water in inches. 

Equations 9 and 10, presented in the Bulk Density Determination and Usage Section, were used 

to convert gravimetric to volumetric soil moisture and the volumetric moisture fractions to soil 

water in inches. 

Soil Extract Conversion 

Soil samples were collected across the depth of each soil layer of known thickness, for example a 

sample from L1 consists of soil from 0-12 inches deep. The soil samples were then ground and a 

sub-sample was extracted from the total ground sample and weighed (this is the soil weight used 

below). The soil sub-sample was then mixed with 50 mL of KCl solution and agitated. The soil-
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KCl solution was then filtered and the KCl extract was analyzed for NO3-N and NH4-N. The 

resulting lbs-N/acre is the total soil N and is considered to be uniform across the soil layer 

thickness. See the Soil Analysis section for a more detailed description. 

To convert from µg/L of NO3-N or NH4-N in the soil extract solution to lbsN/acre-insoil for a 

designated soil layer: 
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where, 

X = concentration of NO3-N or NH4
+-N measured in soil extract solution (ugN/LKCl); 

Y = soil weight used in 50-ml KCl soil extraction (gsoil); 

ρb = average bulk density for that soil layer (gsoil/cm3
soil). 

 

Note that both oven-dried and air-dried soil weights are used in the equation above. The 

assumption is that the air-dried weight and the oven-dried weight are comparable (no additional 

water remaining in the air-dried sample to increase its weight over an oven-dried sample of the 

same soil). This assumption is based on an analysis of the difference between the air-dried soil 

moisture and the oven-dried soil moisture for samples collected in the same replicate and at the 

same depth on the same day. The soil moisture values from the two methods varied 3% on 

average. Since this difference is small, there will be a very small error from using both in the 

conversion equation. This equation condenses down to: 
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The following equation was then used to convert to lbsN/acre for the entire designated soil layer: 
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Lysimeter Water Conversion 

Water samples were collected from lysimeters located at 24- and 36-inch depths. The porous cup 

is 2 inches thick, but I assumed that the collected water is from those depths, ignoring the span of 

the cup and the vertical and radial influence of the lysimeter suction. I also assumed that the 

lysimeter is collecting percolating water only.  

The concentration of simulated nitrate leaching from L2 to L3 is uniform throughout L2. 

Therefore, the concentration of nitrate in the water collected from the lysimeter located at the 24-

inch depth was compared to the amount of nitrate leaching out of the bottom of L2 (12-24 in). 

The concentration of nitrate in the 36-inch deep lysimeter was compared to the nitrate leaching 

from L3 (24-45 in). In the model simulation, the amount of nitrate leached is related to the 

amount of water moving from L2 to L3.  

To convert the nitrate concentrations measured in the lysimeter water (µg NO3-N/L) to 

nitrate leached values (lbs NO3-N/acre), I derived the following conversion equation:  
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where, x (inpercolating water) is the total water in the designated soil layer (in) from the daily soil 

moisture measurements minus the plant AWHC and the PWP. Simulated nitrate leached is 

derived from the amount of nitrate in L2 (NO3_L2) as provided by soil tests, but for the 

lysimeter samples, it is referring to the amount of nitrate in water, “nitrate leached”; therefore, 
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the units of lbs/acresoil are assumed to be interchangeable with lbs/acrewater. This equation 

condenses down to: 
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The following equation was then used to convert to lbsN/acre for the entire designated soil layer: 

! 

lbsN

acrewater
=

lbsN

acre " inwater

# 

$ 
% 

& 

' 
( 

insoil

soil layer

# 

$ 
% 

& 

' 
(  (21) 

4.7.2 SENSITIVITY ANALYSIS 

A sensitive input is hereby defined according to D.M. Hamby (1994) as: (a) a parameter whose 

variability or uncertainty is propagated throughout the model resulting in a large contribution to 

the overall output variability, and (b) a parameter that is highly correlated with the model result 

so that small changes in the parameter result in significant changes in the output. A detailed 

sensitivity analysis was performed to determine the sensitivity of nitrate and water leached to 

variations in input parameters affecting the water budget. The model calibration process focused 

on the input parameters that caused the most significant response in simulations of nitrate or 

water leached. 

A set of base values was determined as initial model inputs. These base values were 

determined from either the initial soil data averaged for the entire study area or from literature 

values (Table 2). The input parameters affecting the soil water sub-model were identified and 

only those parameters were tested during the sensitivity analysis with the exception of the 

internal model parameter K_N2O_Leakage. The K_N2O_Leakage is the fraction representing 

the maximum leakage of nitrous oxide from the nitrification process. During the model 

calibration, simulations of nitrous oxide emissions were found to be extremely poor. In order to 

improve the calibration, this parameter was added to the sensitivity analysis and the calibration. 
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The model’s sensitivity to any other inputs that did not affect the water budget was not examined 

since the water sub-model was the focus for the overall model calibration. Although the study 

was concentrated on only those parameters affecting the water budget, those parameters 

constitute a majority of the model inputs (Tables 2, 6, & 7). There are only a few untested 

parameters, which may have improved the overall calibration. Model sensitivity to initial soil 

nitrate and ammonium was untested and these parameters may have had an impact on total 

nitrate leached. However, initial soil nitrate and ammonium only accounted for 0.17% and 

0.22%, respectively, of the initial and added nitrogen; therefore, the impact on nitrate leached 

would be small. Sensitivity to the user-defined soil layer thicknesses was also not tested due to 

time constraints.  

The sensitivity analysis was performed using the "one-at-a-time” or "local" method where a 

sensitivity ranking is obtained by increasing or decreasing each input value by a given 

percentage (60% in this study) while leaving all others constant, and quantifying the change in 

the model output. Two sensitivity analyses were conducted. The first used the outputs of nitrate 

available for leaching, termed “nitrate leached,” and the second used the outputs of total water 

leached. Using the base values as inputs, starting nitrate and water leached outputs were 

recorded. The interval of variation of 60% for the test parameters is consistent with the 

sensitivity analysis of a nitrogen transport and transformation model by Garnier et al. (2001). 

Every input value in the base data set for each climate parameter was increased or decreased all 

at once, not as increases or decreases in individual daily values.  

The resulting model output was recorded for each increase or decrease in each individually 

varied parameter (Tables 6 & 7). The percent change from the base output of either nitrate or 

water leached was calculated for each increase or decrease in the varied parameters. The average 

percent change was then calculated and the parameters ranked by decreasing influence (Tables 8 
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& 9). The input parameters that effected the greatest change in outputs of nitrate or water leached 

were focused on during the nitrogen sub-model and water sub-model calibrations, respectively.  

4.7.3 UNCERTAINTY ANALYSIS 

The goal of the uncertainty analysis was to objectively identify the amount of error associated 

with simulated values of nitrate leached due to the uncertainty in the input values. The maximum 

and minimum values possible for the field site were determined for a sub-set of the model inputs. 

The model inputs chosen for uncertainty analysis were the same set of parameters used in the 

sensitivity analysis, excluding the internal model parameters, climate inputs, and 

K_N2O_Leakage (Table 10). Uncertainty analysis considers the effect of the inherent 

uncertainty in model input data on the model output. In contrast, sensitivity analysis makes no 

use of information concerning the sources or ranges of uncertainty in model input data (Beck, 

1987).  

The uncertainty in the model’s prediction of nitrate leached was determined using the Monte 

Carlo Method. The Monte Carlo Method involves randomly sampling from assumed or known 

distributions for each input variable in order to create a new set of input values from the 

population of observed field values. Therefore, the Monte Carlo analysis results generated many 

possible model simulations.  

A Monte Carlo simulator was incorporated into NLOS as a new sub-model. The simulator 

uses the random number generator function in STELLA to produce random values for each input 

parameter within specified, user-entered maximum and minimum ranges assuming uniform 

distributions (see Table 10 for all input ranges). Random values were generated for all the same 

inputs used in the sensitivity analysis, excluding the climate parameters and internal model 

parameters. A new STELLA list input device was created for each model input used in the 
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Monte Carlo simulations. This list input device allows the user to either enter a value for each 

parameter or turn on the Monte Carlo equation for a randomly generated input value.  

The Monte Carlo simulator was built into the Soil Characteristics model sector. This was just 

a matter of convenience as many of the user-entered values used in the Monte Carlo simulations 

were available in this sector. When the equation option in the list input device is selected for a 

parameter, then the following algorithm is used to select the input value for that parameter (I will 

run through an example using PWP_1, but this could be substituted by any other parameter in the 

Monte Carlo list): 

if TIME > 84 THEN Random_Reservoir[PWP_1_] else 

Var_Init_Defaults[PWP_1_] (22) 

The algorithm is computed on the first time-step (for the model simulations, the initial time step 

was set to 84, March 24, 2004). The above equation tells the model to use the randomly 

generated value for PWP_1 for all simulation days following March 24, 2004 or else to use the 

initial default value entered for that variable (Var_Init_Defaults[PWP_1_]. The initial default 

values are entered as an array in the Var_Init_Defaults converter. 

The random value is generated using the random number generator built into STELLA that 

randomly selects a number from a uniform distribution bound by user-entered maxima and 

minima. These maximum and minimum values are drawn from arrays in the Rand_Low[PWP_1] 

and Rand_High[PWP_1] converters. To compute the random value, NLOS draws from the 

Infinite_Reservoir and uses the Random_Transfer flow to convert to a random input that is 

stored in the Random_Reservoir. The reservoirs and flow are detailed below. 
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Infinite_Reservoir[Variable_Inputs] 

Stock (Reservoir) 
(Variable type: 1-D array over Variable_Inputs) 

10000000000000000 

Random_Transfer[Variable_Inputs] 

Flow (Uniflow) 

if TIME=84 then RANDOM(Rand_Low[Variable_Inputs, 

Rand_High[Variable_Inputs]) else 0 (23) 

Random_Reservoir[Variable_Inputs] 

Stock (Reservoir) 
(Variable type: 1-D array over Variable_Inputs) 

0 

An Apple Script was written to initiate each model run and then store the resulting simulated 

nitrate-leached values in a text file. Using this automation technique, 2,000 Monte Carlo 

simulations were conducted. Each simulation was generated using a unique, random set of input 

values. The uncertainty in the nitrate-leached prediction from the 2,000 simulations was 

examined using summary statistics and graphical techniques (see the Uncertainty Analysis 

section). 

4.7.4 MODEL CALIBRATION 

The goal of the model calibration was to produce simulations that best fit the field data. By 

tuning the model to best predict the field data, the model may become a better predictive tool, if 

conditions similar to those present in the calibration data set are maintained. In order to test the 

robustness of the calibration, it is necessary to also validate the calibrated model using a new 

data set. The model was not validated as part of this study due to the unavailability of an 

appropriate data set. To remove subjectivity in fitting the model to the field data, I used an 
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automatic optimization technique as described by Nash and Sutcliffe (1970). The parameters 

chosen for use in the calibration are those that were identified as most sensitive by the sensitivity 

analysis. 

To compare model simulations to field data, I calculated the model efficiency coefficient (Ef) 

by comparing each individual field measurement to the corresponding simulated value on the 

same day. The efficiency coefficient is defined as  

! 

E f =

mi "m( )
2

" si "mi( )
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#
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2
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#
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where mi and si are the measured and simulated results, and 

! 

m  is the mean of the n measured 

results (Nash and Sutcliffe, 1970). The efficiency coefficient is defined as the proportion of the 

initial variance accounted for by the model. The maximum model efficiency possible is 1, which 

indicates perfect agreement between the simulated and observed values, but there is no lower 

limit. Negative efficiencies may be obtained when the relative difference between the simulated 

and observed values is greater than the difference between the observed value and the mean of 

the observed values. Only parameters for which both the model produces an output and for 

which field data were collected were used in the overall model efficiency calculation (see Table 

11).  

The model inputs chosen for the initial calibration were those identified by the sensitivity 

analysis as effecting a measurable change on water leached predictions and at least a 5% change 

on nitrate leached predictions, excluding climate inputs (Tables 12 & 13). For each sensitive 

input identified for calibration, successive model runs were performed with either an increase or 

a decrease in the input’s base value while holding all other inputs constant to their base values. 

For each simulation, the average efficiency for the overall model was calculated. In the 
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calibration process, each input was varied multiple times in successively smaller increments 

down to the smallest increment of 0.1 or 0.01 units to achieve the maximum efficiency for the 

overall model. The parameters were not varied outside pre-determined ranges, which were 

identified for each variable at the outset from either published ranges or from the field data. The 

sources for the pre-determined ranges for each variable are listed in Tables 12 & 13. Once the 

maximum efficiency for the overall model was achieved for an input, that input was considered 

calibrated. The calibrated value was then used as the new base value for that input when the next 

most sensitive variable was calibrated. I performed two iterations of parameter calibration. For 

each iteration, the soil water sub-model was calibrated first, followed by the nitrogen dynamics 

sub-model. The soil water sub-model was calibrated by using the parameters that produced a 

measurable effect on water leached predictions in the sensitivity analysis. The nitrogen dynamics 

sub-model was calibrated by using the parameters that produced at least a 5% change on nitrate 

leached predictions. 

5.0 RESULTS and DISCUSSION 

5.1 Field Observations 

In addition to model inputs and calibration, field data were also used to characterize the 

distributions, concentrations, and temporal patterns of nitrate leaching to the water table in 

response to soil water movement and fertilizer application for the study site. Note that the 

observed nitrate and ammonium data from the lysimeter samples are presented in the 

unconverted, original measurement units (µg-N/L). The values were left in the original units for 

comparison to nitrate and ammonium concentrations in groundwater. The groundwater data 

could not be converted because the leachate volumes needed for the conversion are unknown. 

Also, soil moisture is presented as a moisture fraction when compared to the calibrated values for 
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the PWP, Plant AWHC, and porosity since these values are commonly expressed as fractions. 

Elsewhere, the soil moisture data have been converted to soil water in inches by soil layer. 

5.1.1 WEATHER 

In order to assess whether or not the data represent typical field conditions, I compared monthly 

averages of weather data from the study period to 30-year climate normals (Figures 20-23). All 

weather data were measured at the Agassiz CS weather station. The monthly average 

evapotranspiration data are compared to the monthly averages from 1991 – 2004 since a 30-year 

history was unavailable. Mean total monthly precipitation during this study was lower than the 

30-year normal in February, April, June, and July, and higher in August, September, and 

November. The mean total yearly precipitation average over the 30-year normal and this study 

period are 68.5 and 65.5 inches, respectively. Although this study spanned longer than one year, 

the weather data analyzed were for one calendar year from April 2004 to March 2005. The 

relative scarcity of water during the warmer months may have inhibited both microbial activity 

and crop growth.  

Excluding January and September, the mean monthly maximum and minimum temperatures 

were slightly higher for the study period. The 30-year mean minimum temperature was higher 

for some months causing evapotranspiration to be higher during the study period, excluding May 

and September.  

Weather during the study period may have influenced the nitrogen cycle. Since microbes and 

crop uptake are important parts of the nitrogen cycle, the relative scarcity of water during the 

warmer months may have had consequences for nutrient flux during the study period. Since 

temperature and evapotranspiration increases were fairly consistent throughout the study period, 

these increases may not have effected any change on the normal cycles of microbial or plant 

growth, but instead affected the magnitude of these processes. Another possible scenario is that 
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the increased air temperature raised the soil temperature above the threshold required to initial 

soil microbial activity, thereby extending the amount of time that microbes were active in the 

soil. Increased microbial activity could greatly affect soil nutrient levels. 

5.1.2 SOIL 

Soil nitrate and ammonium concentrations in soil layer 1 (0-12 inches deep) spiked immediately 

following fertilizer application (Figures 24 & 25). There was a progressively longer delay before 

peak nitrate concentrations were met in soil layers 2 and then 3. These delayed peaks in the 

deeper layers are attributed to the slow leaching of nitrate in soil pore water. There was a slight 

increase in soil nitrate and ammonium in soil layers 2 and 3 directly following fertilizer 

application, but such a rapid response is unexpected considering the time required for solute 

transport from the surface to deeper soil layers as evidenced by the soil pore water data; 

therefore, this initial immediate spike in ammonium is attributed to contamination of the soil 

samples. Preferential flow could also account for a rapid response time, but this seems unlikely 

since there was no corresponding spike in the soil pore water data. If preferential flow occurred, 

the effect would also be evident in the soil pore water nitrate and ammonium data. Sample 

contamination is a more likely cause considering the nature of the sample collection. The deeper 

samples are extracted from one boring by removing successively deeper soil cores. During this 

process, the hole is open to soil falling in from the surface and the deeper samples come into 

contact with the soil probe that was just in contact with the shallow samples. The soil was 

brushed from the probe between samples, but it was not cleaned. Since ammonium 

concentrations at depth never exceeded the level of that initial spike, which is attributed to 

contamination, ammonium from the fertilizer applied at the surface did not ever reach the deeper 

soil layers. The ammonium at the surface is lost to volatilization and nitrification before it has a 

chance to leach downward.  
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Soil layer 3 was saturated from below due to the rising water table on a few sampling days 

between December and February (Figure 26) and all the soil layers were saturated on January 20, 

2005. Ammonium had already returned to background conditions before the soil became 

saturated. Soil ammonium shows no change in concentration on the sampling days when soil 

layer 3 was water logged (Figures 25 & 26). On January 20, 2005, slush, snow, and pooled water 

were observed at the surface while the water table was very shallow, above the bottom depth of 

L1. Although I did not sample all soil layers on that day, I assumed all layers were saturated. Soil 

samples were collected from the upper six inches for only soil moisture analysis. Nitrate in L1 

and L2 had returned to background conditions by December 13, 2004 and there was no evidence 

for dilution when sampling resumed on February 23, 2005 (Figure 24). Soil layer 3 was also 

water logged on November 17 and December 13, 2004. There is a slight rise in nitrate in L3 on 

those sampling days, but nitrate concentrations started to rise on October 20, 2004, before the 

soil became water logged. Soil layer 2 also showed a rise on October 20 when it was not 

saturated. Nitrate concentrations would decrease due to dilution, not increase. Therefore, the 

slight rise in nitrate in L2 and L3 that began on October 20 may be a result of the crop 

harvesting, which took place on September 28. There were large fluctuations in nitrate 

concentration at the top of the peak in L1 with dips on July 8 and August 10. The cause for these 

dips in nitrate, as opposed to a gradual decline from a peak value, is unknown. The most likely 

cause is sample contamination or measurement error. 

5.1.3 SOIL PORE WATER 

The temporal resolution of the soil water data is coarse, which makes it difficult to attribute a 

direct response in increased soil moisture to net water (precipitation – evapotranspiration) or 

precipitation (Figure 27). Net water is more appropriate for comparison to soil water at depth 

since water is removed from the surface soil by evaporation and removed mostly from L1 and L2 
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by crop uptake (transpiration). The precipitation minus these withdrawals (net water) is the water 

that is actually entering or percolating through the soil. There is an overall rise in soil water 

levels following the onset of increased precipitation and rising net water on about August 20 

(Figure 27). Soil water levels begin to taper off after about December 13 (L3) to January 21 (L1 

& L2). There is a spike in the soil water content in L1 on January 20 and 21 directly following a 

period of increased precipitation beginning on about January 16 (Figure 27). The soil samples on 

January 20 and 21 were collected on the day when slush, snow, and ponded water were observed 

on the soil surface. I assumed these samples were saturated due to the aforementioned field 

observations. The soil moisture content is slightly below the calibrated porosity though, which 

suggests that the porosity is slightly too high. Soil water measurements made on a few 

consecutive days in L1 show some discrepancies. The most dramatic of these are the soil water 

measurements for L1 on June 3 and 4, which vary considerably (1.4 and 3.1 inches, respectively) 

despite the fact that there was no recorded precipitation on either of those days. The differences 

in these data are possibly due to measurement errors, heterogeneities in the hydraulic properties 

of the soil, or the upward migration of soil water due to capillary suction.  

Soil pore water sampling from shallow (24 in) and deep (36 in) lysimeters began prior to 

fertilization and crop planting; therefore, the initial soil pore water nitrate and ammonium 

concentrations are assumed to be due to background concentrations for that time of year (see 

Table 14 for the initial amounts by soil layer and Figures 28 & 29). Soil pore water nitrate 

concentrations do not show an appreciable rise until September 23, just five days prior to crop 

harvesting (Figure 28). The first peak nitrate concentrations appear after a period of heavier, 

more frequent rainfall events from August 21 to September 18. The delay is due to the time 

required for infiltrated water to percolate down to the respective layers, leaching nitrate and 

ammonium, discussed below, as it flows. These peaks also occur after net water begins to rise. 
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There is a delay between the peak nitrate concentrations measure in L2 and L3. This is evidence 

of nitrate leaching with percolating water, which takes longer to reach the lower soil layer.  

Nitrate concentrations above the EPA MCL of 10 mg NO3-N/L were observed in L2 from 

September 23 to November 17 and in L3 from October 20 to November 17. The depth to the 

groundwater table during that time is unknown, but is somewhere below the depth of the 

piezometers (~73 inches deep). Since most nitrate reduction is known to occur in the upper soil 

horizon where microbial activity is predominant, the nitrate concentration observed at 36 inches 

deep most likely persisted as the water percolated down to the water table. Dilution would occur 

as the percolating water mixed with groundwater, but it is likely that soil pore water with nitrate 

>10 mg NO3-N/L is mixing with groundwater.  

The late-season peaks in soil pore water nitrate concentrations are attributed to the downward 

migration of surface-applied fertilizer and mineralized nitrogen from soil organic matter. Soil 

water increases in all layers on about August 23 and soil nitrate declines rapidly from August 21 

to September 22 in response to a period of heavier, more frequent rainfall events from August 21 

to September 18, and the corresponding rise in net water (Figures 24 & 27). These data provide 

evidence for soil storage of nutrients during drier times of the year with rapid leaching in 

response to the onset of increased precipitation. These data show a return to pre-fertilization 

background conditions about 153-208 days after the application of fertilizer and only about 61-

116 days after the onset of increased precipitation.  

There is an immediate rise in ammonium concentration in the deeper lysimeter directly 

following fertilization, but the first spike in ammonium concentration at both depths on 

September 23 occurs after a period of heavier, more frequent rainfall events from August 21 to 

September 18 (Figure 29). This spike also occurs after net water begins to rise. There was most 

likely a higher peak ammonium concentration for L3 some time after the peak observed in L2 
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that would have been observed with more frequent sample collection. This is supported by the 

observed arrival of the peak nitrate concentration in L3, which was delayed after the peak in L2. 

This evidence further supports the relationship between downward water movement and 

leaching. Ammonium concentrations return to pre-fertilization background levels on October 20 

and nitrate on January 21 and remain at those low levels for the duration of the study.  

The initial spike in soil water ammonium directly following fertilization is likely due to 

frequent tampering by animals, which resulted in incredibly high ammonium values from one 

lysimeter as well as the presence of a potent musky smell and black bear fur. The lysimeter caps 

were removed and/or damaged by this tampering leaving the lysimeter open to the air and 

therefore open to contamination. Data from samples that were clearly contaminated were not 

used in this study, although data from samples that may have experienced some contamination 

without the obvious indicators may have been retained and may account for this ammonium 

spike. Preferential flow of fertilizer along the lysimeter casing is not suspected as a cause for this 

spike in ammonium since there was no corresponding spike in nitrate.  

On December 14 and January 21, the water table level was above the depths of the lysimeter 

porous cups during sampling (Figure 26); therefore, the water collected was a mixture of 

groundwater and soil pore water. Mixing of the lower nutrient concentration groundwater with 

the soil pore water should decrease the nutrient concentration in the lysimeter samples. Soil pore 

water ammonium had already returned to background conditions before this mixing occurred and 

hence there is no drop in ammonium concentrations on those days or thereafter. However, soil 

pore water nitrate concentrations had not returned to background conditions before December 

14. With the available data, it is impossible to conclude whether the rising water table diluted 

soil pore water nitrate or it had already returned to background levels when this mixing occurred. 
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5.1.4 GROUNDWATER 

Water was available from all four piezometers only on six sampling days and from one or 

two piezometers on three more additional days during the study. Depth to water measurements 

were performed on all days when water was available and samples were collected from all 

piezometers on three sampling days and from just one piezometer on two days. The rest of the 

time, the piezometers were dry. There are too little data from these few sampling days to analyze 

annual trends in groundwater concentrations of nitrate and ammonium. The average 

concentration of nitrate in groundwater averaged for the study site was noticeably less than the 

concentrations in the deep lysimeter (Figure 28). This suggests that high concentration of nitrate 

in leachate will be diluted when mixed with groundwater. Groundwater ammonium was about 

the same as the ammonium concentrations measured in L2 and L3, except on January 21 (Figure 

29). The low ammonium concentrations coincide with background conditions. On January 21, 

the water table was just inches below the soil surface in some areas and above the surface, as 

evidenced by the observed ponding, in other areas. The increase in groundwater ammonium on 

that day is attributed to mixing with a higher ammonium source near the soil surface.  

There was a slight shift in groundwater flow direction from the previous study (1998-2001) 

and gradient magnitudes were slightly higher, but overall there is good agreement between 

historical measurements and DTW measurements made during this study. Depth to water 

measurements recorded during this study coincide with the groundwater flow estimate produced 

with the historical depth to water data. Water level data suggest groundwater was flowing at an 

average of 167º east of north (Table 1; Figures 3 & 5). The calculated gradient magnitudes, 

directions, and regression coefficients for the fitting of the plane are shown in Table 1. 

The average groundwater flow direction was used to determine whether piezometers were 

located approximately up- or down-gradient. Piezometers S-1 and S-4 were up-gradient and S-2 



 

 53 

and S-3 were down-gradient (Figure 5). I expected to see higher nitrate concentrations in 

groundwater from down-gradient piezometers due to mixing with higher nitrate concentration 

soil pore water. Nitrate and ammonium concentrations were higher in the up-gradient 

piezometers on all days when water was available in both up- and down-gradient piezometers: 

November 17, December 14, and January 21. The differences in nitrate and ammonium (µg-

N/L), respectively, between the up-gradient and the down-gradient piezometers on those days 

were -1886 and -3.3 on November 17, -629 and -39 on December 14, and -1706 and -165 on 

January 21. Agricultural activity on the adjacent, up-gradient field site may have increased 

groundwater nutrient concentrations in the up-gradient piezometers. More and deeper 

piezometers are needed to quantify the addition of nitrate and ammonium in leachate from the 

study site to groundwater.  

The water table rose above the maximum soil sampling depth and above the depths of the 

lysimeter porous cups on a number of sampling days (Figure 26). Although these data are 

uncorrected for variations in surface elevation, they are fairly close since there is little change in 

elevation across the field. On sampling days when no water was available in the piezometers, the 

water table depth was greater than 6 feet, the depth of the deepest piezometer. Depth to water 

measurements were recorded on two consecutive days per month whenever water was present in 

the piezometers. Out of all the days when water was observed in the piezometers, only 4 days 

showed depths to water above the deepest sampling depth: December 13 and 14, January 20 and 

21 (Figure 26). Dilution of the sampling column by a rising water table occurred between 

November 17 and February 23. Water was below the greatest sampling depth on both of these 

days and above on the four sampling days in between (Figure 26). It is unlikely that water table 

elevations rose above the deepest sampling depth outside of this date range on days when 

sampling was not conducted, since the precipitation data show that the heaviest precipitation 
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events occurred during that date range (Figure 26). Therefore, the time period during which the 

sampling column may have been saturated by the rising water table, thereby diluting solute 

concentrations, is from November 17 to February 23.  

5.1.5 NITROUS OXIDE 

Nitrous oxide emissions spiked twice during the study period. The first spike occurs on May 28-

June 4 following the fertilizer application on May 19 (Figure 30). There is a small rise on 

September 23 and 24 after a period of heavier, more frequent rainfall events from August 21 to 

September 18 (Figure 30). The second spike occurs on January 24 may be a response to a 

sequence of heavy rainfall days, which occurred from January 12 to 22, or due to a freeze-thaw 

event. This spike coincides with a spike in soil moisture in L1 measured on January 20 (Figure 

31). There was also a dramatic rise in the maximum daily air temperature from below-freezing 

(25ºF) to above-freezing (56ºF) temperatures from January 14 to 21 (Figure 31).  

Nitrous oxide is the by-product of the microbially-mediated denitrification and nitrification 

reactions; therefore, nitrous oxide emissions are dependent upon nitrate or ammonium 

availability in the soil. The initial peak in nitrous oxide emissions coincides with the initial peaks 

in nitrate and ammonium in L1 (Figure 32). The later peaks in nitrous oxide emissions do not 

coincide with rises in nitrate or ammonium. There was some nitrate and ammonium, although 

relatively low levels, available in the soil when the later peaks in nitrous oxide occurred, but they 

are attributed to precipitation and temperature as discussed above. These field data agree with the 

typical behavior of emissions due to denitrification, which are usually small during much of the 

year with spikes following rainfall events or irrigation (Hermanson et al., 2000). 
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5.2 Statistical Results 

Statistics and related plots were generated using the statistical software R. The R code and input 

data sets are provided on the data CD. Summary statistics, scatterplots, and boxplots, revealed 

small, non-normal, heteroskedastic sample distributions for the field soil parameters (Table 5, 

Figures 10-19). Note that in all the statistical results tables and figures, soil sampling depth is 

represented by 1 to 5 (1=0-6”, 2=6-12”, 3=12-24”, 4=24-36”, and 5=36-45”), which are the 

original sampling depths as opposed to the soil layer averages. Splashplate method is represented 

by either 2 or 3, which correspond to the Splashplate (2x) and Splashplate (3x) methods, 

respectively. Soil ammonium and nitrate are presented in the original, unconverted sample 

concentrations (µg/L) and soil moisture is presented in the unconverted gravimetric form (g/g).  

I proceeded with non-parametric inference testing given the small sample sizes and the non-

normality of the data. Notched boxplots showed significant group mean overlap in most cases 

(Figures 10-13). Overlapping notches suggest no significant differences in population 

distributions. Where overlap was unclear or non-existent, I employed a Kruskal Wallis Rank 

Sums Test. P-values less than 0.05 were obtained for the following pairings: soil ammonium by 

depth, soil moisture by plot, and soil coarse fragments and moisture by replicate. The null 

hypothesis of no difference between groups was rejected for these data populations (Table 15). 

The alternative hypothesis that at least two populations differed in location was accepted. I 

proceeded with pairwise testing using the Pairwise Wilcoxon Rank Sums Test. P-values of less 

than 0.05 indicated differences in population distributions for the following initial field 

measurements: soil ammonium differed for all soil depths except 1 and 2, soil coarse fragments 

differed between replicates 1 and 2, and soil moisture differed between replicate 1 and all other 

replicates, (Table 16). For a number of data group pairs, there were too few observations to 
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perform the test. In this instance, the comparison between groups is indicated by “no 

significance.”  

The previous treatment method did not account for any significant differences in the initial 

field data. The only significant difference between locations was for coarse fragments between 

replicates 1 and 2 and soil moisture between replicate 1 and all other replicates. The difference in 

replicate 1 was determined not to be widespread enough, i.e., it did not affect all soil parameters, 

to segregate replicate 1 data from the study site averages. The differences in soil ammonium for 

all depths except 1 and 2 did not affect the soil layer determination. The lack of difference 

between soil ammonium for depths 1 and 2 supports the decision to lump these layers into the 

user-defined L1 for modeling purposes. Depths 4 and 5 where lumped into L3 despite the 

significant difference in soil ammonium between these depths. Model input values were 

calculated by averaging the initial soil data as follows. Data from soil depths 1 and 2 were 

averaged into L1, depth 3 became L2, and depths 4 and 5 were averaged into L3. See the Soil 

Layer Determination section for a complete discussion of the soil layer determination methods. 

Previous treatment method was ignored in the averaging. Once the data were averaged by depth, 

the two plots within each replicate were averaged, and finally data from the four replicates were 

averaged to obtain values for the entire study area.  

5.3 Sensitivity Results 

The average % changes in nitrate or water leached with ± 60% of each input are listed in Tables 

8 & 9. The model inputs are ranked from highest to lowest average % change on the model 

output of nitrate or water leached. Nitrate and water leached predictions are most sensitive to the 

highest ranked parameters.  

Nitrate leached is most sensitive to the Plant AWHC of L3 (AWHC 3), bulk density in L1, 

the particle densities of all soil layers, and organic matter in L1 (Soil OrgM % C L1and Soil 
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OrgM % L1; Table 9). The Plant AWHC of L3 is used to determine the WHC (the product of the 

AWHC 3 and soil thickness), which restricts water flow out of L3 (DP3) according to equation 6. 

Particle density is an internal model parameter that is used in the calculation of porosity by soil 

layer, along with bulk density, according to the following equation for porosity in L1: 

POR1 = (1-Bulk Density/Particle Density) * Soil thickness (25) 

where POR1 is the porosity of L1 in inches, bulk density is given in g/cm3, the particle density is 

given in g/cm3, and soil thickness in inches, which was kept constant. The standard range of 

particle densities used for calculating porosity is 2.60-2.65 g/cm3. Many soils contain an 

abundance of quartz, which has a particle density of 2.65 g/cm3. Porosity is converted from its 

usual format, a unitless fraction, to inches by multiplying the fraction by the soil layer thickness 

in inches (as shown in equation 25 above). All water variables are modeled in inches by NLOS. 

NLOS uses porosity and water flow (DP1 in the equation below, but this equation is also 

applicable to L3) to calculate soil nitrate and fertilizer nitrate leached from one soil layer to the 

next. The following equation calculates soil nitrate leached from L1 to L2: 

NO3_Leach_L1 = NO3_L1*(1-EXP(((-1*k1)*(DP1))/POR1)) (26) 

where POR1 is the porosity of L1 in inches, DP1 is the movement of water from L1 to L2 in 

inches, NO3_L1 is the amount of NO3-N in L1, k1 is a coefficient for nitrate leaching calculated 

as  

k1 = 7.6 - (64 * PWP_1) (27) 

where PWP_1 is the permanent wilting point of L1. The permanent wilting point is the soil water 

content at which water is no longer available for plant uptake, which is identified as the soil 

water content at 15 bars of soil suction. Nitrate leached was also very sensitive to PWP 1 and 

PWP 2 (Table 9). Fertilizer nitrate leached from L1 to L2: 

Fert_NO3_Leach_L1 = FERT_NO3_L1*(1-EXP(((-1*k1)*(DP1))/POR1)) (28) 
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where POR1 is the porosity of soil L1 in inches, DP1 is the movement of water from L1 to L2 in 

inches, FERT_NO3_L1 is the amount of fertilizer NO3-N in L1, k1 is a coefficient for nitrate 

leaching. Nitrate losses due to leaching accounted for the highest percentage of nitrate removed 

in the final calibrated model simulation (Table 14).  

Nitrate leached is also very sensitive to the percentage of soil organic matter carbon in L1. 

This value is used to calculate the % nitrogen in soil organic matter (Soil_OrgM_%_M_L1) 

according to the following equation: 

Soil_OrgM_%_N_L1 = Soil_OrgM_%_C_L1/Soil_OrgM_CN_L1 (29) 

where Soil_OrgM_%_C_L1 is the % carbon in soil organic matter in L1 and Soil_OrgM_CN_L1 

is the carbon to nitrogen ratio of soil organic matter in L1. Nitrate leached predictions are 

sensitive to the % nitrogen in soil organic matter because the soil organic matter pool of nitrogen 

constitutes by far the greatest percentage of the initial and current (i.e., final) nitrogen at 99% 

and 90% of the respective budgets (Table 14). 

Nitrate leached was sixth most sensitive to the initial soil organic matter percent in L1 (Soil 

OrgM % L1; Table 9). The initial soil organic matter in L1 is used to determine the first order 

denitrification rate constant. Denitrification accounts for only 3.5% of the total nitrogen removed 

from the system (Table 14). This is a small percentage of the total nitrogen removed relative to 

large sinks such as crop uptake and leaching. The parameters affecting crop uptake were not 

tested in the sensitivity analysis; therefore denitrification in the largest sink after leaching. Any 

significant reductions in the nitrate available for leaching will affect the final nitrate leached 

values.  

A sensitivity analysis of the original NLEAP conducted by Follett et al. (1994) found the 

model to be particularly sensitive to soil water content at the permanent wilting point, referred to 

as permanent wilting point (PWP) in NLEAP, and the nitrogen uptake index (NUI). NUI is the 
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total crop N uptake per unit of crop yield and is analogous to value of Crop A Target N Yield in 

NLOS, which is calculated from user-entered values of Crop yield and Crop N%. These 

parameters were not tested in the sensitivity analysis. The entire list of input parameters that 

were tested for sensitivity by Follett et al. (1994) was not specified; therefore, it is not possible to 

directly compare results.  

As expected, water leached is by far most sensitive to user-entered rainfall, which constituted 

the greatest percentage (81%) of the initial pool of water (Tables 8 & 17). This is the only source 

of water to the system aside from the relatively small initial amounts present in the soil layers. 

Water leached was also sensitive to the runoff adjust factor, evapotranspiration, and initial water, 

Plant AWHC, and PWP for all soil layers (Table 8). The runoff adjust factor is a user-entered 

fraction (0 to 1) that can be varied to adjust the amount of runoff specific to the modeler’s field 

conditions. For the sensitivity analysis, the runoff adjust factor was varied between the maximum 

and minimum of this range, as opposed to ±60%. The base value of the runoff adjust factor was 

set to zero to reflect the nearly level field and highly permeable soils, but the final calibrated 

value was 0.20 (Tables 12 & 13). Runoff accounted for 4.6% of the total water removed from the 

system (Table 17). Evapotranspiration is entered as daily values by the user and constituted 27% 

of the water removed from the system (Table 17). The Plant AWHC and PWP, after being 

converted to WHC and Bound Water, are used to calculate the amount of water flowing from 

one layer to the next according to equations 3, 5, and 6.  

5.4 Uncertainty Results 

Using the Monte Carlo simulator that I built into the model and the automation technique for 

recording predicted nitrate leached from each model run, 2,000 model runs were conducted for 

uncertainty analysis. For each model run, only the total nitrate leached value was recorded. 

Using these 2,000 values, I used the histogram tool in the Data Analysis package of Excel to 
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create a histogram and related summary statistics for the simulated values (Figure 33 and Table 

18). The histogram uses a bin size of 5 units from 40 to 195 lbs NO3-N/acre in order to capture 

the entire range of simulated values. Finally, the probability of occurrence for each bin value was 

calculated (probability = frequency/total number of observations) and the cumulative probability 

for each bin size plotted (Figure 34).  

Each model run was performed using a new set of randomly generated inputs. The input data 

sets were not recorded. Analysis of the nitrate-leached values from the uncertainty runs shows 

that uncertainty is large, varying between 43 and 195 lbs/acre of NO3-N leached (Figure 33 and 

Table 18). The distribution appears normal, there do not appear to be any outliers, and data 

appear to be unimodal. The histogram is very slightly skewed (non-normal) right (skew is 0.045) 

and is slightly sharper than a normal distribution (kurtosis is 0.019; Table 18). The skew of the 

data to the right suggests a tendency towards a lower bound on the data. A good typical value for 

a skewed distribution is described by the median (130 lbs NO3-N/acre) or the mean (131 lbs 

NO3-N/acre). The standard error of the simulated distribution is 0.49. The lower and upper 95% 

bounds on the data are 90 and 175 lbs NO3-N/acre, respectively. This suggests that given the 

uncertainty in each tested input parameter, nitrate leached values will fall between 90 and 175 lbs 

NO3-N/acre 95% of the time. The random values used to produce this result were all drawn from 

uniform distributions since this was the only option available in STELLA. The actual data 

distributions were not determined. The input parameters may not be uniformly distributed or may 

have a central tendency, which, if accounted for in the random number generator, could produce 

a much smaller uncertainty in nitrate leached predictions. The final uncertainty analysis result is 

that nitrate leached predictions will fall between 90 and 175 lbs NO3-N/acre 95% of the time 

under the following conditions: a silt loam, slightly drier and warmer climatic conditions than the 

30-year average at the Agassiz CS weather station, a no-till, non-irrigated silage corn crop 
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fertilized with commercial fertilizers, and the chosen uncertainty ranges associated with the input 

parameters that affect only the soil water sub-model varied along a uniform distribution.  

5.5 Calibration Results 

Sensitivity rank was used to determine which inputs to adjust in the model calibration and the 

order in which they were calibrated. Despite the sensitivity of water and nitrate leached to 

climate inputs, they were not calibrated. Tables 12 and 13 list the parameters used in the model 

calibration listed in order of decreasing sensitivity based on the sensitivity results. At the start of 

calibration, the model settings and base inputs were set to those listed in Table 2 with one 

exception: K_N2O_Leakage. As discussed in the Sensitivity Analysis section, K_N2O_Leakage 

was added to the sensitivity analysis due to the very poor match between simulated and observed 

nitrous oxide emission values. K_N2O_Leakage was set to the value (0.01) determined from 

previous model calibration efforts at the start of the calibration, but it was recalibrated for the 

new calibration. Since water and nitrate leached were insensitive to K_N2O_Leakage, it was 

calibrated last. 

All parameters were varied within their pre-determined allowable ranges during the 

calibration (Tables 12 & 13). Each parameter was calibrated to obtain the best efficiency for the 

model overall. For each iteration, I calibrated the soil water sub-model parameters first (Table 

12), i.e., the parameters to which water leached was most sensitive (Table 13), and the nitrogen 

dynamics sub-model parameters second, i.e., the parameters to which nitrate leached was most 

sensitive. Some of the parameters used in the soil water sub-model calibration were also used in 

the nitrogen dynamics sub-model calibration. If there was a change from the previous calibration 

for a repeated parameter, it was set to the new calibrated value. The calibrated values listed in 

Tables 12 and 13 are the final calibrated values achieved after the two iterations. The calibration 

was ceased after the second iteration because there was very little change in any of the values.  
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Particle densities and bulk densities were varied within their pre-determined ranges to obtain 

porosities (as determined by equation 25) as close as possible to the range of 0.435 for a sandy 

loam to 0.485 for a silt loam (Brady, 1974) while also maximizing model efficiency. The 

calibrated porosities are shown in Table 19. The porosities for L1 and L2 are outside the 

allowable range, but limiting bulk density and particle density to values that returned porosities 

within the range sacrificed model efficiency too greatly. The calibrated porosity for L2 (0.489) is 

very close to the average porosity for a silt loam (0.485). The calibrated porosity for L1 (0.574) 

is quite a bit higher than the porosity for a silt loam, but cracks in the soil surface, burrows, roots, 

and soil disruption from agricultural activities could all increase soil porosity in the shallow soil; 

therefore, this calibrated porosity was determined to be acceptable. Field observations on January 

20 suggested that L1 was saturated on that day. The soil moisture content on January 20 (0.56) is 

nearly equal to the calibrated porosity. The soil moisture content of a fully saturated soil would 

equal the porosity. These data suggest that the calibrated porosity of 0.574 for L2 closely 

represent the actual field conditions.  

Comparisons of both calibrated and uncalibrated model outputs to field data are shown in 

Figures 35-44. The final calibrated model is considered calibrated only for the climate, soil, crop, 

agricultural management, and fertilizer conditions tested at this study site. The average efficiency 

of the overall model increased from -2.19 to -0.17, the average soil water sub-model efficiency 

increased from -1.82 to -0.63, and the average nitrogen dynamics sub-model efficiency increased 

from -2.34 to 0.02 (Table 11). A model efficiency coefficient less than one suggests that there 

are deficiencies in the model or that there are errors in the observed data due to sampling and/or 

measurement. The best model efficiency possible is 1, which indicates perfect agreement 

between the simulated and measured values. 
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An overall model efficiency of -0.17 appears to be low. Garnier, et al. (2001) used the same 

model efficiency calculation to evaluate the nitrogen transport model CANTIS (Carbon and 

Nitrogen Transformations in Soil) for a year-long field trial. Efficiency coefficients were 

specified for each modeled parameter at multiple simulation depths. The average coefficients for 

all depths were compared to the results from the current study. The researches found the 

following efficiency coefficients for the CANTIS model: 0.50 for predictions of soil water 

content, -0.61 for nitrate in soil, and 0.74 for nitrate in leachate collected in suction cup 

lysimeters. For comparison, the following average efficiency coefficients were obtained with the 

calibrate NLOS model: -0.63 for soil water content, -0.02 for nitrate in soil, and -0.38 for nitrate 

in leachate. The best efficiency was obtained for predictions of nitrate in soil with NLOS, with 

considerably less efficiency for soil water and nitrate leached predictions. 

The model efficiency values for individual parameters indicate that the model is best at 

predicting soil nitrate in L1 (Ef = 0.71) and worst at predicting soil water in L1 (Ef = -0.63; Table 

11). The greatest increase in efficiency was obtained for total nitrous oxide emissions (-16.08 to 

0.31). This great change was in large part due to the adjustment of the rate constant for leakage 

of nitrous oxide from the nitrification process (K_N2O_Leakage).  

The efficiency of the calibrated model was calculated for both wet and dry periods (Table 

20). The wet period was designated as October – April and the dry period as April - October 

(Figure 20). The efficiency of the overall model was -5.13 for the wet months and -0.53 for the 

dry months. For the wet months, the largest gains in efficiency were made in predictions of soil 

nitrate in L2 and L3 whereas the greatest losses were made in the prediction efficiency for soil 

nitrate and ammonium in L1 (Tables 11 & 20). For the dry months, the only gains in efficiency 

were for predictions of soil water L2 and total nitrous oxide emissions whereas the greatest loss 

was made in the prediction efficiency for nitrate leached from L3 (Tables 11 & 20). Better model 
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efficiency was expected for the wet months since the model uses steady-state flow assumptions 

and steady-state conditions are approximated by uniform soil wetting, which would occur during 

the wet months. Contrary to the expected result, better efficiency was obtained for the dry 

months. Leaching was greatest during the wet months. Accumulative error from the higher 

concentrations of leached nitrate and ammonium may account for the poor efficiency during the 

wet months. 

The model efficiency was also averaged by individual soil layer using the observed and 

simulated values from the calibrated model that were associated with that soil layer. L1: soil 

nitrate, soil ammonium, and soil water; L2 and L3: nitrate leached, soil nitrate, and soil water. 

The model was most efficient at predicting nitrate, ammonium, and water in L1 (Ef = 0.17) and 

less efficient at predicting nitrate leached, nitrate, and water in L2 (Ef = -0.37) and L3 (Ef = -

0.48). Since the downward migration of nitrate is dependent upon water flux (see equation 26), 

the decreasing efficiency in soil nitrate predictions with depth could be attributed to problems 

with the soil water sub-model or with the nitrogen withdrawals from each soil layer, which 

would then compound with depth.  

The algorithms used to calculate leaching do not change with depth, i.e., the equation for 

nitrate leaching from L1 to L2 is the same equation used for nitrate leaching from L2 to L3. 

Water movement (DP1) and soil nitrate (NO3_L1) are the only factors that vary with time in the 

leaching equation. For L2, these variables would be DP2 and NO3_L2, etc. Leaching and crop 

uptake are the only processes that deplete nitrate from L2 (NO3_L2) and leaching is the only 

process that depletes nitrate from L3 (NO3_L3). Crop uptake from L2 accounts for only 8.1% of 

the total budget of removed nitrogen from L2 whereas leaching accounts for the rest of the 

fluctuation in L2 soil nitrate. Leaching from L3 is completely dependent on variations in water 

movement (DP3). The algorithms for water movement, on the other hand, vary with depth, i.e., 
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the algorithm for calculating DP1 is different than for DP2 and DP3 (see equations 3 to 6). Errors 

in predictions of the amount of water flowing from L1 to L2 would increase or decrease the 

amount of water available for flow from L2 to L3. Since DP1 – DP3 are dependent on the water 

in each layer (Water_L1, etc.), inaccurate prediction of water flow from L1 to L2 would lead to 

an inaccurate prediction of flow from L2 to L3 and so on. Therefore, the decreasing efficiency in 

soil nitrate predictions with depth could be attributed to the propagation of errors in soil water 

flow predictions. 

Overall, the model efficiency results were satisfactory for the intended purpose, which was to 

guide model calibration. Garnier et al. (2001) found their simulations of nitrate transport and 

transformation with the CANTIS model to be satisfactory and suggested that the model 

efficiency calculated from nitrate content data was not a good criterion for proper evaluation of 

the model. Also, the model calibration is only as good as the data used to calibrate the model. 

Whitmore (1995) attributed model inefficiencies to problems in obtaining accurate field-

measured values of nitrogen. There is a large degree of variance in the initial soil data collected 

for the current study. This is exhibited by the long whiskers, a number of outliers, and the length 

of the boxes in the notched boxplots produced for the statistical analysis of the initial soil data 

(Figures 10-13). Boxplots were not produced for all the field data after those initial samples, but 

similar variances for the rest of the study period are expected due to the inherent heterogeneity of 

soil. Considering the variance of the field data and the scarcity of data points that were available 

for use in the model efficiency calculations, the model efficiency is not an accurate measure of 

the fitness of the model. The efficiency coefficient was not used to evaluate the fitness of the 

model; visual assessments and linear regression were used. The model efficiency, though, was 

useful for calibration and for identifying potential problem areas of the model. 
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5.6 Model Simulations 

The calibrated model was used to track the flow of nitrogen and water through the vadose zone 

for the duration of the study period. The STELLA environment allows the user to create tables 

and graphs within the model to track specified model outputs; therefore, there are countless 

options of how to display and examine model results. This discussion provides the model results 

pertinent to the following goals: assess the ability of the model to reproduce the field data, 

specifically soil water fluxes following precipitation events; investigate the impact of transient 

vs. steady-state field conditions and model assumptions on simulations of water flow and nitrate 

transport; examine temporal patterns of nitrate leaching to the water table in response to soil 

water movement and fertilizer application; and determine the optimal time to perform the Post-

Harvest Soil Nitrate Test (PHSNT). Model simulations were then conducted using model inputs 

for various hypothetical field, fertilizer, and climate conditions scenarios, within the calibrated 

range of the model, to examine the fate of nitrogen. Finally, I recommended uses for the 

calibrated NLOS model and proposed any changes to the model that might improve those 

predictions. 

5.6.1 NITROGEN FLUX 

Linear regression analysis was used to examine the ability of the model to predict the observed 

data. The trend lines on Figures 45-51 represent the actual fit between the observed and the 

simulated values, determined by linear regression. Perfect agreement between the simulated and 

observed values would fall directly on a 1:1 line. The corresponding equations and regression 

coefficients (R2) are shown on the figures. The actual fit to the field data may be better than the 

R2 values indicate due to timing shifts in the simulated and observed data. For example, the peak 

value of observed nitrate leached from L2 (9.15 lbs NO3-N/acre) matches the simulated peak 

value (8.52 lbs NO3-N/acre) very well, but the simulated value occurs on October 10 whereas the 
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observed value was measured on October 20. The simulated and observed values that occurred 

on the same day were compared for the linear regression analysis; therefore, the peak observed 

value of nitrate leached from L2 on October 20 was compared instead to the simulated value for 

that same day (1.95 lbs NO3-N/acre), which indicates a much worse fit. The regression analysis 

results alone are not an appropriate sole indicator of model fitness. They can aid in the model 

evaluation though, in conjunction with visual inspection of the plots of simulated and observed 

values.  

Calibrated simulations of nitrogen along various pathways were compared to the observed 

values. Observations of soil pore water nitrate, as measured in both shallow and deep lysimeters, 

and soil nitrate and ammonium in L1 correlate well with the simulated values (Figures 45-47 & 

50; Table 21). The regression coefficients for the equations determined for soil pore water nitrate 

in the shallow and deep lysimeters and soil nitrate and ammonium in L1 are 0.63, 0.84, 0.84, and 

0.87, respectively. The simulated peaks and magnitudes correlate well with the observed data for 

these variables. The model is less efficient at predicting soil nitrate in layers 2 and 3 and nitrous 

oxide emissions (Figures 48, 49, & 51); the regression coefficients for the equations determined 

from these parameters were too low (R2 = 0.011, 0.0092, and 0.33, respectively). A poor fit 

between simulations and the field data could be the result of either insufficiencies in the model or 

difficulties or problems in obtaining accurate field measurements for those variables. Also, it is 

likely that the conversion of nitrate and ammonium concentrations in lysimeter water and soil 

extract (µg-N/L) to lbs-N/acre had at least a 3% error due to the use air-dried soil weights, 

instead oven-dried weights, in the conversion. This was discussed in the Unit Conversion 

Equations section. 

A three-year study evaluated NLEAP for predictions of residual soil nitrate with irrigated and 

non-irrigated corn on a sandy soil near Oakes, ND (Follett et al., 1994). The researchers found 
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that NLEAP accounted for 85% of the variability in the mass of residual soil nitrate (RSN) for 

the calibrated site, but only 46% for the validation site by regression analysis. They concluded 

that NLEAP was valuable as a decision-making tool for the tested climate, treatments, and soil 

types, but that further testing would be required for other soils, N-sources, and climatic 

conditions. Lysimeter leachate data from a five-year study of a corn field in Coshocton, OH, 

were used as a validation data set to test NLEAP. NLEAP was found to account for 86% of the 

variability in the mass of nitrate leached as measured monthly with lysimeters (Shaffer et al., 

1991). The results for the soil pore water nitrate and nitrate and ammonium in L1 produced for 

the current study are as good or better than these published results, although predictions of soil 

nitrate in L2 and L3 are much worse. I did not find any published studies comparing observed to 

predicted values of nitrous oxide emissions with the original NLEAP. 

Predictions of soil nitrate and ammonium in L1 were the most efficient predictions of soil 

nutrients according to correlation analyses (Table 21). For L1, the magnitudes and timing of 

variations in nitrate and ammonium are fairly well matched to model simulations upon visual 

inspection (Figures 37 & 40), although there are unexplained dips in peak nitrate on July 7 and 8 

and August 9 that are not present in the simulated values. The model does not simulate nitrate in 

L2 and L3 as efficiently. The model completely misses the first peaks in nitrate for both soil 

layers (Figures 38 & 39). This suggests that the simulated response to precipitation events, in the 

form of eventual leaching of nitrate from the surface to the deeper soil layers, is slower than the 

actual response.  

Nitrate and ammonium in the soil respond immediately to fertilization with large spikes 

occurring within 1-2 days of application (Figures 52 & 53). The model does not track crop 

growth specifically, but crop nitrogen uptake is based on crop growth. As nitrogen becomes 

available for growth, the growing crop progressively increases its nitrogen uptake. The nitrogen 
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uptake then diminishes as the crop matures, and there is no uptake after harvest. As the crop 

demand for nitrate in L1 diminishes, more nitrate accumulates in soil and becomes available for 

leaching (Figure 52). The first large rise in leaching from L1 to L2 occurred on August 25 

(Figure 54) and the first large increase in soil nitrate in L2 started on about August 29 (Figure 

52). Thereafter, nitrate in L1 was depleted and nitrate levels in L2 and L3 increased 

predominantly due to leaching. Only about 20% of the total crop root density extends into L2. 

Correspondingly, crop nitrogen uptake from L2 was only 27 lbs-N/acre compared to 136 lbs-

N/acre in L1 (Table 14). The user-defined model settings did not allow the roots to extend into 

L3.  

Ammonium in L1 spiked to its maximum value five days after fertilizer application (May 23; 

Figure 53). The crop ammonium uptake rate showed a first response as a small peak 3 days later 

(May 26), a slight decrease, and then it peaks at its maximum value on June 4. Soil ammonium 

showed a sharp decline from its initial peak as it is removed by volatilization, crop uptake, 

nitrification, and mineralization. Simulation results from NLOS predict the loss of 6.0 lbs NH4-N 

to volatilization from a starting pool of 11 lbs NH4-N and the release of 1.5 lbs-N/acre as nitrous 

oxide, the by-product of nitrification, to the atmosphere (Table 14). Ammonium volatilization 

typically accounts for 0 to 25% of the applied N for a soil of pH < 7 (Hermanson et al., 2000) 

and about 5% of ammonium nitrate (S. Bittman, personal communication). Simulated 

ammonium volatilization accounted for 1.5% of the applied ammonium-N, which falls within the 

expected range.  

Nitrate leached does not show a direct correlation with crop growth, crop harvesting, or 

fertilization (Figure 54). The first spike in nitrate leaching occurred on May 31 and then again on 

August 25. Both peaks occurred following stretches of increased precipitation from May 21 to 
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June 14 and August 21 to September 18 (Figure 55). Both peaks also correspond to a slight 

increase in net water from May 25 to June 1 and a more dramatic increase from August 20 to 29.  

The correlation analysis results show that the model was inefficient at predicting nitrous 

oxide emissions (Table 21). This is also evident in the comparison of simulated nitrous oxide 

emissions to field data (Figure 51). Nitrous oxide is produced by the nitrification of ammonium 

by aerobic microbes and the denitrification of nitrate by anaerobic microbes. Microbial activity is 

a function of soil water content, air temperature, and soil nitrate and ammonium. The factors that 

control nitrous oxide emissions are poorly understood (Robertson, 1993); therefore, a 

deterministic model of nitrous oxide production based on a poor understanding of the processes 

involved would be expected to produce unsatisfactory predictions. Also, it is difficult to measure 

nitrous oxide emissions from soil.  

Nitrous oxide emissions increase rapidly following fertilization, level off once crop growth 

begins, and increases dramatically again after a period of more frequent, heavier rainfall (Figure 

56). The last peak in nitrous oxide emissions occurs before nitrate in L1 decreases to background 

conditions (Figure 57). The observed data and the model simulations for nitrous oxide both 

exhibit the same character of sharp peaks with an immediate return to little or no nitrous oxide 

being emitted. This character is attributed to the reliance on air temperature and soil water data, 

which both exhibit jagged peaks (Figure 58).  

NLOS under-predicted soil water in all layers (Figures 42-44). Denitrification occurs under 

anaerobic conditions. If simulated soil moisture was consistently low, anaerobic conditions may 

have been simulated more frequently than they actually occurred leading to an erroneous 

increase in nitrous oxide emissions from denitrification. This may account for some of the 

simulated peaks in nitrous oxide emissions that were not observed in the field (Figure 41). More 
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nitrous oxide was produced from denitrification (5.2 lbs-N/acre) than nitrification (1.5 lbs-

N/acre; Table 14 and Figure 59). 

Simulated nitrous oxide completely misses the peak in observed values on January 25 

(Figure 41). This peak was attributed to either a freeze-thaw event or to a stretch of increased 

precipitation events (see the Nitrous Oxide section within Field Observations). Currently, NLOS 

is not able to simulate a nitrous oxide response to freeze-thaw. Although NLOS is inefficient at 

predicting nitrous oxide emissions, this does not have a large effect on leaching predictions since 

it constitutes such a small percentage of the overall nitrogen budget (0.18% and 1.8% of 

removed N in LS and L1, respectively, from both denitrification and nitrification; Table 14). 

Further research into the factors controlling nitrous oxide emissions is currently being conducted 

at the Pacific Agri-Foods Research Centre and may some day become useful for improving 

NLOS. 

5.6.2 WATER FLUX 

Examination of the linear regression plots of observed and simulated soil water values shows 

that NLOS is systematically under-predicting soil water (Figures 60-62). This may be due to the 

calibrated values of PWP and Plant AWHC (Table 12). These values were not varied outside the 

range for a loam to a clay loam as given by Brady (1974). If higher values for PWP and Plant 

AWHC were used, the simulated soil water would shift upwards accordingly.  

Comparisons of monthly averages of soil water may produce a better fit than daily values, 

especially considering the erratic behavior of the daily measured values, but monthly averaging 

is not feasible since there are data for at most one or two days each month. The erratic nature of 

the soil water simulations is attributed to the daily time step and the tipping bucket approach to 

modeling soil water flux. The monthly soil water observations show a much smoother trend.  
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Simulation of soil water in L2 was fairly close to observed values (R2 = 0.58; Figure 61). 

Regression coefficients from the linear regression correlation between simulated and observed 

values for L1 and L3 were lower (0.53 and 0.45, respectively; Table 21). This is due to the fact 

that the calibrated model efficiency was greater for L2 (Table 11). The simulated and observed 

soil water values in L1 are more erratic than in L2 and L3 and model processes become more 

complex and harder to calibrate deeper in the model, accounting for the poorer calibration to L1 

and L3. The result is a higher efficiency for L2 and a better fit between the observed and 

simulated values for L2.  

Previous studies using the original NLEAP model focused mainly on nutrient flux. Monthly 

leachate volumes collected in a five-year study in Coshocton, OH were used as a validation data 

set for NLEAP. NLEAP accounted for 91% of the variability in the observed data (Shaffer et al., 

1991). An evaluation of the performance of NLEAP for predictions of soil water content in a 

silty clay and a clay loam soil under a wheat crop in Saskatchewan, Canada found that NLEAP 

estimated soil nitrate better than soil water and that it under-predicted soil water in the silty clay 

soil and over-predicted soil water values in the clay loam (Beckie et al., 1995). Beckie et al. 

(1995) used NLEAP for event-based simulations and Shaffer et al. (1991) made comparisons to 

monthly field measurements, whereas the simulation period for this study spanned the study year 

using a daily time step. 

Soil water is removed from L1 by downward flow, evaporation, and transpiration; from L2 

by downward flow and transpiration; and from L3 by downward flow only. The evaporation 

depth is defined by the user-entered value of consolidated evaporation depth for either a heavy or 

a light textured soil. A permanent wilting point for L1 greater than 0.22 is classified as a heavy 

textured soil and less than or equal to 0.22 as a light textured soil. The calibrated PWP for L1 is 

0.13; therefore, the soil is light textured and the consolidated evaporation depth is 4.0 inches. 
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This is the default model value. Transpiration does not occur from L3 because the maximum 

rooting depth was defined as 2 feet. The maximum rooting depth determines the thickness of L2.  

The water budget indicates that the highest percentage of water removed from the system is 

from leaching, followed by evapotranspiration and runoff (Table 17). Since water leaching 

accounts for the highest percentage of water removed, inaccuracies with the water flow 

algorithm will have a large effect on soil water predictions. Downward flow is limited by the 

water holding capacity (WHC) and the bound water (equations 3-6). Water holding capacity is 

the product of the user-entered plant available water holding capacity (AWHC) and the soil 

thickness, and bound water is the product of the user-entered permanent wilting point (PWP) and 

the soil thickness (Table 22). The soil water content must be greater than the sum of the WHC 

and bound water in order for any water to be removed from a soil layer by downward flow. 

Water may not be removed below the value of the bound water by evaporation or transpiration. 

Therefore, in the simulation results there is a straight line at these boundaries if no additional 

water is being added or removed (for the upper boundary only) by evaporation or transpiration. 

What this means for L1 is that all the simulated soil water loss below 3.12 inches was due to 

evaporation and transpiration, not downward flow; in L2, values below 3.48 inches of soil water 

are due to water being removed by transpiration only; and no evaporation or transpiration is 

occurring in L3, therefore there are no simulated values less than 6.09 inches (Figures 42-44). 

Soil water in L2 did not drop below the no-flow boundary after the crop was harvested on 

September 28 since transpiration is no longer occurring (Figure 43).  

When transpiration was no longer occurring, after the corn harvest on September 28, the 

peaks in simulated soil water match daily peaks in rainfall (Figure 63). There is some deviation 

from this in L1 where evaporation was still occurring, but all the peaks match the peaks in daily 

rainfall. There is a delay after the rainfall event before the corresponding soil water peak appears 
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in L1, a further delay until it appears in L2, and an even longer delay until it appears in L3. In the 

simpler post-harvest case where there is no transpiration, the magnitude of the rainfall peak is 

diminished by evaporation before it arrives in L1. This entire slug of water is then moved the 

next day, to the next soil layer, and on until the water is leached from the system. Field soil 

moisture data were not collected frequently enough to characterize the soil water response to a 

precipitation event for comparison to these simulations.  

5.6.3 STEADY-STATE VS. TRANSIENT FLOW 

The soil water sub-model uses a simplified unidirectional, steady-state flow algorithm. With 

frequent rainfall, nearly uniform soil moisture may be achieved with depth within each soil layer. 

Under these conditions, a steady-state flow algorithm may provide the best approximation of 

flow. Soil moisture sampling was not conducted at multiple depths within each soil layer, so the 

data do not exist to determine if soil moisture content was uniform with depth within each layer. 

A comparison of the average soil moisture fraction for each soil layer by sampling day shows 

overlapping moisture fractions for each soil layer on a majority of sampling days (Figure 27). 

These data can be extrapolated to suggest that the soil moisture fraction within each layer was 

also uniform, but this is only speculative. 

Steady-state conditions may also be approximated if the entire soil column is fully saturated. 

If and when saturated conditions were reached in the field soil was determined by computing the 

percent saturation of each soil layer for the maximum soil moisture measured during the study. 

Complete saturation is defined by soil water content equal to the porosity. Porosity was not 

directly measured in the field; it was calibrated through the calibration of the bulk and particle 

densities. I used equation 25, which is the equation used by NLOS, to calculate an approximate 

porosity for each soil layer. The calibrated bulk and particle densities were used in the 

calculation. To calculate percent saturation, I used the following equation: 
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% Saturation=(Soil Water/Porosity)*100 (30) 

where soil water and porosity are in inches. Only L1 ever achieved 100% saturation, but L2 and 

L3 were very nearly fully saturated (96% and 97% saturation, respectively; Table 19). Figure 27 

shows that the observed soil water was well below the calibrated porosity on most sampling days 

for all layers. These data suggest that the field soils are dominated by predominantly unsaturated 

flow conditions. Uniform moisture concentrations with depth may still occur, leading to nearly 

steady-state conditions, despite the fact that the soils were never fully saturated. Soil sampling 

did not occur during heavy rainfall, but sampling did occur within a day of heavy rainfall in 

some instances. For example, 0.7 inches of precipitation fell on November 15 and soil sampling 

was conducted on November 16 (Figure 27). The nearly one-month delay in peak leached nitrate 

from L2 to L3 suggests that water is moving fairly slowly through the soil (Figure 28); therefore, 

sampling did not have to occur simultaneous with a precipitation event in order to capture the 

soil water response except for in soil very close to the surface. 

The simplified tipping-bucket approach to soil water flow modeling best represents steady-

state flow conditions; therefore, I would expect to see better model simulations for the wetter 

months when precipitation events were more frequent. As described in the calibration results 

section, model efficiencies for the calibrated model were calculated for the wet and dry months 

separately. Contrary to what I would expect, the model efficiency coefficients from these two 

scenarios show that the soil water sub-model produced a better fit overall to the dry months than 

to the wet months (Table 20). The regression coefficients for the correlation analysis of the 

simulated vs. observed soil water data for the wet and dry months were also calculated, although 

the figures are not provided. The average R2 value for all three soil layers for the wet months 

(0.34) was also less than for the dry months (0.38). This may be due to the fact that the original 

NLEAP was developed in the Midwest where soils are typically much drier. 
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The observed data indicate that unsaturated flow conditions existed in the field. Steady-state 

conditions are hypothesized to have been predominant most of the year based on the moisture 

fraction data by soil layer, but more sampling at various depths within each soil layer would have 

to be conducted to confirm this hypothesis. The current steady-state flow algorithm used by 

NLOS produced fairly good simulations. A better fit between observed and simulated values 

could be achieved with further calibration of the model, calibration to a data set spanning longer 

than one year, and a better field data set obtained by longer, more frequent sampling and 

sampling for some of the input parameters that were determined from previous studies or from 

published values for a silt loam. I do not recommend implementing a transient flow algorithm at 

this time since the simulations were fairly good for such a limited study period. 

5.6.4 POST-HARVEST SOIL NITRATE TEST (PHSNT) 

Soil tests are conducted after the final harvest in the late summer or early fall with the aim of 

identifying excess nitrate accumulation in the upper 12 inches of soil at the end of the growing 

season. A sampling depth of 0-12 inches is recommended, which corresponds to L1. Post-

Harvest Soil Nitrate Tests (PHSNTs) can return variable results depending on the timing of 

sample collection. As discussed above, soil nitrate levels are predominantly dependent upon 

leaching in response to rainfall events, followed by denitrification, which is influenced by 

temperature and rainfall, and crop uptake; therefore, the results of the post-harvest soil test will 

be impacted most by the timing in relation to the onset of increased precipitation. The current 

guidelines for conducting the test, as discussed in a pamphlet distributed by the Oregon State 

University Extension Service, suggest sampling as soon as possible post-harvest and before any 

heavy rainfall events (Sullivan and Cogger, 2003). During this study period, increased rainfall 

began on about August 21, before the crop was harvested on September 28; therefore, excess 

nitrate had already begun to leach before the crop was harvested. Figure 64 shows that the first 
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peak in nitrate leached was on May 31. Post-harvest, soil nitrate levels remained steady until 

about October 24. At this point, nitrate began leaching from L1 downward and leaching 

continued from L2 and L3 until soil nitrate was depleted to background levels (Figure 65). The 

initiation of the post-harvest leaching occurred directly following the first post-harvest 

precipitation event (Figure 65). Excess soil nitrate was at peak post-harvest levels only until a 

rainstorm occurred. From that point onward, soil nitrate was continually depleted mainly due to 

leaching (Figure 66). Also, nitrate depletion post-harvest due to leaching removed nitrate from 

the soil; the first post-harvest rainfall event leached 16.1 lbs NO3-N/acre of nitrate from L1. 

Based on these findings, I concur that the PHSNT be performed as soon as possible post-harvest, 

and especially before any heavy rainstorm events. Any delay in sampling will return lower 

nitrate levels as nitrate will be immediately lost to leaching with a rainstorm. These data also 

indicate that reliance on the PHSNT alone will provide an inaccurate measure of nitrate available 

for leaching since some leaching is already occurring pre-harvest. Additional testing, such as a 

pre-sidedress nitrate test (PSNT), which is typically conducted when the corn is at the four- to 

six-leaf stage, and soil nitrate testing in spring or early summer are also suggested for nitrogen 

management in corn (Sullivan and Cogger, 2003). The results correspond with these 

recommendations. 

5.6.5 HYPOTHETICAL SCENARIOS 

Using the calibrated model, a number of simulations were conducted using various sets of 

hypothetical inputs in order to predict the fate of nitrogen under a variety of field, fertilizer, and 

climate conditions. For each simulation, the output parameters associated with only the nitrogen 

budget were recorded. Descriptions of the changes made to the model inputs with each 

hypothetical scenario are listed in Table 23. The resulting balanced nitrogen budgets from each 

simulation are shown in Table 24. 



 

 78 

In order to quantify the amount of nitrate leaching due to natural field conditions as opposed 

to the impacts of the cultivation and fertilization that occurred, in scenario 1 the calibrated model 

was run with no fertilizer and no crop (fallow). In this scenario, 145 lbs/acre of NO3-N were 

leached as opposed to 140 lbs/acre leached with the calibrated model. Nitrate lost to 

denitrification was reduced from 12 to 8.9 lbs NO3-N/acre, volatilization decreased from 6.0 to 0 

lbs-N/acre, and nitrification and runoff were slightly reduced (Table 24). There was also a 

reduction in the final amounts of soil organic matter N in the slow pool (4671 to 4663 lbs-

N/acre). The increase in nitrate leached and the decrease in soil organic matter N was caused by 

increased mineralization of organic matter to ammonium, which was then nitrified and leached. 

The amount of mineralization that occurred can be determined from the nitrogen budgets by 

subtracting the total initial soil organic matter from the total current soil organic matter in all 

pools. In scenario 1, the total amount of mineralization was 175 lbs-N/acre compared to 167 lbs-

N/acre in every other scenario. The crop nitrogen uptake and greater denitrification that occurred 

in the calibrated scenario removed all additional nitrogen from fertilizer applications in addition 

to a greater amount of organic nitrogen than in scenario 1. Scenario 1 suggests that there is more 

leaching under fallow conditions due to the high amounts of soil organic nitrogen and due to the 

lack of nitrogen uptake by a crop. This scenario also suggests that the amount of soil organic 

nitrogen will decrease with time as it is slowly mineralized, denitrified, and leached as nitrate.  

In order to gain an understanding of the time span required to remove the initial soil organic 

nitrogen by mineralization, denitrification, and eventual leaching, the model was run for 1500 

simulation days (the maximum allowed by the model; equivalent to just over 4 years) under 

fallow conditions with no fertilizer applied (scenario 5). The base climate data were repeated for 

the simulation years after the study period. In the four-year simulation period, 577 lbs of NO3-

N/acre were leached and soil organic matter nitrogen only decreased by about 12 percent (Table 
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24). Total nitrate leached during each of the four simulation years was about equal to the amount 

leached in scenario 1. This suggests an average reduction in soil organic matter of 3% each year; 

therefore, approximately 33 years would be required to deplete the soil organic matter nitrogen 

storage and finally decrease nitrate leaching below the 145 lbs NO3-N/acre observed in scenario 

1.  

A number of hypothetical scenarios were tested with the aim of reducing nitrate leaching. 

The total amount of fertilizer applied was unchanged in these scenarios in order to maintain 

realistic conditions for the calibrated maximum crop yield input. In scenario 2 the fertilizer was 

applied on July 30. This day was chosen because crop nitrogen uptake peaked on this day in the 

calibrated simulation. I expected total crop nitrogen uptake would increase if the fertilizer were 

applied to coincide with peak crop growth. Crop nitrogen uptake decreased from 163 to 121 lbs-

N/acre. Ammonium volatilization, denitrification, and nitrate leaching increased by 14, 19, and 

19 lbs NO3-N/acre, respectively. Increased volatilization and denitrification will lead to 

increased greenhouse gas emissions (NH3, N2O, and N2). In this scenario, air quality and 

groundwater quality were degraded.  

In scenario 3, the fertilizer was applied on June 18 as opposed to May 19. June 18 is the first 

day of a long stretch of low-precipitation days during the growing season (Figure 63). I expected 

to see a decrease in nitrate leached and in fact, there was a 2-lb-N/acre decrease. Ammonium 

volatilization increased from 6 to 22 lbs-N/acre. The dencrease in nitrate leached is attributed to 

increased volatilization, which would make less ammonium available for mineralization and then 

nitrification, since all other factors affecting nitrate would lead to increased leaching, i.e., 

decreased crop nitrate uptake, decreased denitrification, and increased nitrification in LS. The 

peak crop nitrogen uptake had already passed on June 18; therefore the crop removed less 

nitrogen. To minimize leaching, an ideal scenario would consist of fertilizer being applied just 
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before maximum crop growth and just after substantial rainfall and before a dry stretch, so that 

the soil is saturated, but no further precipitation leaches any excess nitrate from the system 

before it has the chance to be taken up by the crop or denitrified.  

Gascho and Hook (1991) recommended applying 25% of the fertilizer at planting and the 

remainder at two later growth stages (V6 and V8) since there is a time lapse after planting before 

significant N uptake occurs. The Department of Ecology also recommends multiple N 

applications for silage corn grown in western Washington due to frequent precipitation, which 

may impede N uptake by the crop (Hermanson et al., 2000). For scenario 4, the fertilizer 

applications were split into three even events of 251 lbs/acre on May 19, July 2, and August 15 

(these last two days were chosen as one-third and two-thirds of the way through the crop 

growing season). Contrary to the published recommendations, this produced an 15-lb increase in 

nitrate leached. The increase is attributed to the last application of the fertilizer, which was 

applied only 6 days before a rainfall event, decreased ammonium volatilization, which left more 

ammonium available to potentially be mineralized, nitrified, and then leached, and decreased 

denitrification. The decrease in volatilization and denitrification accounted for 5.4 lbs-N/acre, 

assigning a 9.6-lb NO3-N/acre increase to leaching. This scenario suggests that timing fertilizer 

application to rainfall events is more important than evenly spacing the applications throughout 

the growing period. 

6.0 CONCLUSIONS 

The central objective of this project was to evaluate the applicability of the NLOS model for use 

by regulatory agencies to make local predictions of nitrate leaching under agricultural soils. Due 

to time and monetary constraints, I was not able to evaluate all aspects of the NLOS model. This 

research focused on the soil water sub-model and its affect on simulations of water and nitrate 
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flux. In consideration of the fact that this study was not a comprehensive evaluation of the 

model, I can only make recommendations about specific portions of the model. In its current 

form, NLOS makes satisfactory predictions of nitrate and ammonium in the upper 12 inches of 

the soil profile and nitrate leaching from a 36-in depth, according to linear regression analysis 

(R2 values greater than or equal to 0.84). As discussed, timing shifts may have resulted in very 

low R2 values whereas visual inspection reveals a good fit between simulated and observed 

values. Based on visual inspection of the plots of observed vs. the calibrated simulation values, 

NLOS matches trends in nitrate leaching from the 24-in soil depth, late season, i.e., post-harvest, 

trends in soil nitrate from 24 to 36 inches, and trends in soil water from 0-36 inches. Restrictions 

on the depth of soil and water sampling prohibited any observations of processes occurring 

deeper than the maximum depths the soil and water sampling equipment would allow (45 inches 

for soil nutrients and soil moisture, about 73 inches for groundwater, and 36 inches for soil pore 

water). The newly calibrated NLOS model should not be relied on for predictions of nitrous 

oxide emissions as the field data showed evidence of nitrous oxide release in response to freeze-

thaw, which is not modeled. Nitrous oxide simulations also show large peaks that occurred in 

late August and September, which were not observed in the field. However, more frequent field 

sampling may have captured these peak emission events.  

Model simulations may have an improved fit to the field data if all aspects of the model, as 

opposed to only those parameters associated with the soil water sub-model, were included in the 

sensitivity analysis and calibration and if field data collection was improved. I would expect to 

only see a slight improvement in model predictions from the inclusion of a more expansive set of 

parameters in the sensitivity analysis and calibration. There are very few input parameters that 

were not included in the original calibration since almost every model process is tied to the soil 

water sub-model. Implementing changes to the model algorithms is the only remaining route to 
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an improved model efficiency using the available observed data and without expanding the focus 

of the calibration. This may effect great changes on the model results though. For instance, the 

adjustment of the soil particle densities and the nitrous oxide emission rate constant 

(K_N2O_Leakage) effected dramatic changes on the simulated results. Tuning rate constants and 

standard values embedded in the soil nitrogen dynamics sub-model may lead to dramatic 

improvements in nitrogen flux simulations. I would not expect to see any increases in the 

efficiency of water predictions without changes to the basic model structure as this sub-model 

was thoroughly tested.  

More frequent field data collection may improve the calibration and the fit between the 

simulated and observed values. There were very few data points to use in the model efficiency 

calculations, and therefore, the calibration. There were many simulation days where water was 

flowing and there was a simulated value of nitrate leaching, but there was no field data for that 

day for comparison. If field sampling had occurred during the time that the peak nitrous oxide 

emissions were simulated, a similar peak in the field data may have been observed thereby 

increasing the fit between the observed and simulated values. An increase in the frequency and 

number of field observations would provide more points for comparison and also would produce 

a more detailed and accurate picture of field conditions. 

Improvements to the soil water sub-model may improve model predictions. NLOS does not 

simulate water flow or solute movement at low soil water contents. Instead, water would 

accumulate in a layer and then flow; resulting in zero values on a number of simulation days. On 

days when water was accumulating and not flowing, the model did not simulate any leaching 

between layers. When field observations happened to coincide with these no flow days, there 

was no simulated value for comparison thereby decreasing the model efficiency. If NLOS were 
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altered in order to simulate water flux at low soil water contents, then the model efficiency may 

be improved.  

Leaching of excess soil nitrate occurs directly following fertilizer application and before crop 

nitrate N increases and continues until heavy fall rains have leached away excess nitrate and the 

soil is returned to background conditions. Since nitrate is made available for leaching 

immediately following fertilizer application, a soil nitrate test conducted post-harvest alone is not 

an accurate measure of nitrate leaching potential in response to agricultural activities. Soil nitrate 

tests conducted prior to harvest in addition to the PHSNT would more accurately indicate the 

amount of leaching that has already occurred, as long as the amount of nitrogen applied and crop 

N uptake is known. Use of the PHSNT to indicate leaching potential after harvest has already 

missed substantial amounts of nitrate leached. Also, the PHSNT would have to be conducted 

before the first heavy post-harvest rainfall event in order to catch any significant amount of 

available nitrate before it is leached away; therefore, I recommend performing the test concurrent 

with harvesting and not relying on the PHSNT alone. 

In addition to the above discussion, the major conclusions of this study as revealed through 

evaluation of field observations and model simulations are as follows: 

• Simulated and observed nitrate in the soil and leachate showed an immediate response to 

rainfall events; 

• Peak simulated and observed nitrate in the soil and leachate and ammonium in the soil 

occurred directly following fertilization; 

• Attenuation of nitrate solute curves was evident in the field data as nitrogen losses 

occurred with the downward migration of nitrate in percolating water; 

• Excess nitrate was leached out of the system and background conditions were restored 

during the study year; 
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• Nitrous oxide emissions increased in response to temperature increases and rainfall 

events; 

• The study period experienced a drier spring, a wetter fall, and higher air temperatures 

than the 30-year averages; 

• Location, depth, and treatment history were not significantly related to the observed 

parameters;  

• Water leached predictions are by far most sensitive to user-entered rainfall amounts; 

• Nitrate leached predictions are most sensitive to the Plant AWHC for L3, which is used 

in the equation for water movement; 

• NLOS prediction efficiency was greater from April to October than from October to 

April; 

• NLOS prediction efficiency decreased with increasing depth in the soil column; 

• NLOS predictions of nitrate leached will fall within 90-175 lbs NO3-N/acre 95% of the 

time if uniform uncertainty within the defined ranges is assumed for model inputs 

associated with the soil water sub-model, and the climate, soil, crop management, and 

fertilizer conditions are consistent with the study: 

• Hypothetical scenarios suggest that timing fertilizer application to rainfall events is the 

most effective way to reduce nitrate leaching when all other conditions are constant.  

7.0 RECOMMENDATIONS 

The icon-based modeling used in STELLA is an ideal environment for model development. 

Considering the success many researchers have achieved with the original NLEAP model and 

the user-friendly STELLA environment, continued research with NLOS would be ideal for 
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future student projects. Ideas for future projects, stemming from this research, are enumerated 

below.  

1. Further calibration and sensitivity analysis to include all aspects of the model, as opposed to 

focusing on the soil water sub-model. In addition, more frequent field data collection or 

event-based field data collection and modeling may improve the calibration. 

2. Once a calibrated model is attained, validate the model to another field data set for conditions 

similar to those of the calibration data set. 

3. Install deeper wells both up-gradient and down-gradient of the field site to compare 

background groundwater nitrate concentrations to groundwater with nitrate leached from the 

study area in order to quantify nitrate leached to the water table. 

4. Compare water flux simulations from NLOS to a model using a transient, unsaturated flow 

algorithm in the soil water sub-model.  

5. Install wick or zero-tension pan lysimeters in order to quantify leachate volumes at multiple 

depths. 

6. Measure values for the model inputs that were obtained from existing field sites or from 

published studies in order to more accurately represent field conditions. 

7. Evaluate recent studies on the factors controlling nitrous oxide emissions for possible model 

improvements. 

8. Use NLOS to perform monthly simulations or event-based simulations of nitrogen and water 

flux in relation to cropping events. 

9. Update NLOS to simulate ammonium leaching, since it was observed in the field. 
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Table 1. Hydraulic gradient calculation parameters. 

Date
Points used in 

calculation

Max difference b/t 

head values (ft)

Gradient 

Magnitude (i)

Flow direction 

(degrees from north)

Coefficient of 

Determination (R
2
)

1998-2001 4 4.8 0.38 164.9 0.91

11/16/04 4 5.3 0.42 166.4 0.97

11/17/04 4 5.3 0.42 166.4 0.97

12/13/04 4 5.3 0.42 166.4 0.97

12/14/04 4 5.4 0.43 166.4 0.98

1/20/05 4 5.6 0.44 167.5 0.97

1/21/05 4 5.5 0.43 166.8 0.98

Average from study period: 0.43 166.7  
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Table 2. Required model inputs: descriptions and sources. 

Soil Data
General Information Description Units Base input Data source

Province code for Canadian province or 

territory; not used anywhere in 

the model

unitless 2 2 = British Columbia

Municipality code for municipality 

(geographical level of 

government smaller than a 

province); not used anywhere in 

the model

unitless 2 2 = Chilliwack

Soil ID a means to identify a soil in a 

given location; not used 

anywhere in the model

unitless NA NA

Field a means to identify the field 

where the soil samples were 

taken; not used anywhere in the 

model

unitless 1 1 = Field 9717

Soil Survey code to identify a soil survey; not 

used anywhere in the model

unitless NA NA

Soil Classification a switch to identify a soil as 

heavy textured (assigned a value 

of 1) or light textured (2); a soil 

is heavy textured if the PWP is 

>0.22 in/in and light textured if 

the PWP is <0.22 in/in

unitless equation on NA

Hydrologic Group code to indicate the hydrologic 

group

unitless 2 ASS

Soil drainage 

classification

code to classify the soil type in 

terms of its drainage 

characteristics

unitless 8 ASS: 8= moderately 

well

Impermeable layer 

classification

code to indicate the presence or 

absence of a compacted soil layer 

that is very slowly permeable and 

located below the plow depth but 

above 4 feet deep

unitless 0 HRH

Percent slope percent slope of the field being 

simulated

unitless 4.5 ASS (avg of 0-9% 

slopes = 4.5)

Landscape position code indicating the general 

landscape position of the field

unitless 4 ASS

Soil depth information

Soil Thickness LS surface layer; approx. 1 inch; 

characterized by litter 

decomposition and the 

application of fertilizers, manure, 

and soil amendments; soil 

microbial activity

inches 1 default, also this was 

the amount scraped 

off the surface before 

soil samples were 

collected

Soil Thickness L1 soil microbial activity, 

incorporation of fertilizers, 

manure and soil amendment, and 

root growth

inches 12 default value; also 

concurs w/ sampling 

depths; ~80% of 

roots in the upper 12 

inches of soil (Derek 

Hunt, personal 

communication)

Profile Depth depth of the three soil layers (L1, 

L2, and L3); max depth of 60 

inches

inches 45 this is the the max 

depth to which soil 

samples were 

collected; soil 

transitions to coarse 

sand and cobbles 

below this depth 

(Shabtai Bittman & 

Derek Hunt, personal 

communication)

Depth to Root 

Restriction

defines the depth at which roots 

may encounter a restriction, such 

as an impermeable layer or 

rocks, that will reduce the rate of 

their growth; reduces the 

thickness of L2

feet 0 no restrictions 

observed in soil 

samples collected 

within the root zone 

(HRH)

Depth to H2O 

Restriction

defines the presence and depth 

of a water restriction layer; 

reduces the thickness of L2

feet 0 no water restrictions 

observed in soil 

samples (HRH)

consol evap depth 

heavy

the depth at which evaporation 

occurs in a heavy textured soil; 

default is 2.0 inches

inches 2 default value

consol evap depth light the depth at which evaporation 

occurs in a light textured soil; 

default is 4.0 inches

inches 4 default value

Root depth max for 

simulation

root depth max for simulation is 

normally calculated within the 

model from crop rooting depth 

information. However, the 

internal calculation may be frozen 

(equation off) and a user-entered 

value used instead; reduces the 

thickness of L2

feet 2 80% rooting in the top 

12 inches, 20 % from 

12 to 24 inches 

(Derek Hunt, personal 

communication)

Soil physical characteristics

Bulk Density LS bulk density for LS g/cm3 1.12 Agassiz data from 

field 9419- all 

treatments (first 3" 

meas)

Bulk Density L1 bulk density for L1 g/cm3 1.13 Agassiz data from 

field 9419- all 

treatments (avg of 3-

12" meas)

Bulk Density L2 bulk density for L2 g/cm3 1.15 Agassiz data from 

field 9419- all 

treatments (avg of 13-

19" meas)

Bulk Density L3 bulk density for L3 g/cm3 1.15 Agassiz data from 

field 9419- all 

treatments (avg of 13-

19" meas)

CEC 1 cation exchange capacity (CEC) 

for L1

meq/100g 14.9 Avocet lab results run 

on a composite 

sample from depth 2- 

multiple dates and 

reps

Clay L1 percent clay in L1 (% of soil 

volume); not used anywhere in 

the model

unitless 0 NA

Clay L2 percent clay in L2 (% of soil 

volume); not used anywhere in 

the model

unitless 0 NA

Coarse Frag % L1 coarse fragment (fragments 

>2.0mm in diameter) % in L1 (% 

of soil volume)

unitless 0.36 HRH (sieve analysis 

data)

Coarse Frag % L2 coarse fragment (fragments 

>2.0mm in diameter) % in L2 (% 

of soil volume)

unitless 0.17 HRH (sieve analysis 

data)

Permeability L1 permeability of L1; not used 

anywhere in the model

inches/hour 0 NA

Permeability L2 permeability of L2; not used 

anywhere in the model

inches/hour 0 NA

Plant AWHC L1 plant available water holding 

capacity (AWHC) for L1 

(inches/inches)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998

Plant AWHC L2 plant available water holding 

capacity (AWHC) for L2 

(inches/inches)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998

PWP 1 permanent wilting point (PWP) 

for L1 (soil water content @ 15 

bars; inch/inch)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998
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Soil Data
General Information Description Units Base input Data source

Province code for Canadian province or 

territory; not used anywhere in 

the model

unitless 2 2 = British Columbia

Municipality code for municipality 

(geographical level of 

government smaller than a 

province); not used anywhere in 

the model

unitless 2 2 = Chilliwack

Soil ID a means to identify a soil in a 

given location; not used 

anywhere in the model

unitless NA NA

Field a means to identify the field 

where the soil samples were 

taken; not used anywhere in the 

model

unitless 1 1 = Field 9717

Soil Survey code to identify a soil survey; not 

used anywhere in the model

unitless NA NA

Soil Classification a switch to identify a soil as 

heavy textured (assigned a value 

of 1) or light textured (2); a soil 

is heavy textured if the PWP is 

>0.22 in/in and light textured if 

the PWP is <0.22 in/in

unitless equation on NA

Hydrologic Group code to indicate the hydrologic 

group

unitless 2 ASS

Soil drainage 

classification

code to classify the soil type in 

terms of its drainage 

characteristics

unitless 8 ASS: 8= moderately 

well

Impermeable layer 

classification

code to indicate the presence or 

absence of a compacted soil layer 

that is very slowly permeable and 

located below the plow depth but 

above 4 feet deep

unitless 0 HRH

Percent slope percent slope of the field being 

simulated

unitless 4.5 ASS (avg of 0-9% 

slopes = 4.5)

Landscape position code indicating the general 

landscape position of the field

unitless 4 ASS

Soil depth information

Soil Thickness LS surface layer; approx. 1 inch; 

characterized by litter 

decomposition and the 

application of fertilizers, manure, 

and soil amendments; soil 

microbial activity

inches 1 default, also this was 

the amount scraped 

off the surface before 

soil samples were 

collected

Soil Thickness L1 soil microbial activity, 

incorporation of fertilizers, 

manure and soil amendment, and 

root growth

inches 12 default value; also 

concurs w/ sampling 

depths; ~80% of 

roots in the upper 12 

inches of soil (Derek 

Hunt, personal 

communication)

Profile Depth depth of the three soil layers (L1, 

L2, and L3); max depth of 60 

inches

inches 45 this is the the max 

depth to which soil 

samples were 

collected; soil 

transitions to coarse 

sand and cobbles 

below this depth 

(Shabtai Bittman & 

Derek Hunt, personal 

communication)

Depth to Root 

Restriction

defines the depth at which roots 

may encounter a restriction, such 

as an impermeable layer or 

rocks, that will reduce the rate of 

their growth; reduces the 

thickness of L2

feet 0 no restrictions 

observed in soil 

samples collected 

within the root zone 

(HRH)

Depth to H2O 

Restriction

defines the presence and depth 

of a water restriction layer; 

reduces the thickness of L2

feet 0 no water restrictions 

observed in soil 

samples (HRH)

consol evap depth 

heavy

the depth at which evaporation 

occurs in a heavy textured soil; 

default is 2.0 inches

inches 2 default value

consol evap depth light the depth at which evaporation 

occurs in a light textured soil; 

default is 4.0 inches

inches 4 default value

Root depth max for 

simulation

root depth max for simulation is 

normally calculated within the 

model from crop rooting depth 

information. However, the 

internal calculation may be frozen 

(equation off) and a user-entered 

value used instead; reduces the 

thickness of L2

feet 2 80% rooting in the top 

12 inches, 20 % from 

12 to 24 inches 

(Derek Hunt, personal 

communication)

Soil physical characteristics

Bulk Density LS bulk density for LS g/cm3 1.12 Agassiz data from 

field 9419- all 

treatments (first 3" 

meas)

Bulk Density L1 bulk density for L1 g/cm3 1.13 Agassiz data from 

field 9419- all 

treatments (avg of 3-

12" meas)

Bulk Density L2 bulk density for L2 g/cm3 1.15 Agassiz data from 

field 9419- all 

treatments (avg of 13-

19" meas)

Bulk Density L3 bulk density for L3 g/cm3 1.15 Agassiz data from 

field 9419- all 

treatments (avg of 13-

19" meas)

CEC 1 cation exchange capacity (CEC) 

for L1

meq/100g 14.9 Avocet lab results run 

on a composite 

sample from depth 2- 

multiple dates and 

reps

Clay L1 percent clay in L1 (% of soil 

volume); not used anywhere in 

the model

unitless 0 NA

Clay L2 percent clay in L2 (% of soil 

volume); not used anywhere in 

the model

unitless 0 NA

Coarse Frag % L1 coarse fragment (fragments 

>2.0mm in diameter) % in L1 (% 

of soil volume)

unitless 0.36 HRH (sieve analysis 

data)

Coarse Frag % L2 coarse fragment (fragments 

>2.0mm in diameter) % in L2 (% 

of soil volume)

unitless 0.17 HRH (sieve analysis 

data)

Permeability L1 permeability of L1; not used 

anywhere in the model

inches/hour 0 NA

Permeability L2 permeability of L2; not used 

anywhere in the model

inches/hour 0 NA

Plant AWHC L1 plant available water holding 

capacity (AWHC) for L1 

(inches/inches)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998

Plant AWHC L2 plant available water holding 

capacity (AWHC) for L2 

(inches/inches)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998

PWP 1 permanent wilting point (PWP) 

for L1 (soil water content @ 15 

bars; inch/inch)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998
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Soil physical 

characteristics

Bulk Density LS bulk density for LS g/cm3 1.12 Agassiz data from 

field 9419- all 

treatments (first 3" 

meas)

Bulk Density L1 bulk density for L1 g/cm3 1.13 Agassiz data from 

field 9419- all 

treatments (avg of 3-

12" meas)

Bulk Density L2 bulk density for L2 g/cm3 1.15 Agassiz data from 

field 9419- all 

treatments (avg of 13-

19" meas)

Bulk Density L3 bulk density for L3 g/cm3 1.15 Agassiz data from 

field 9419- all 

treatments (avg of 13-

19" meas)

CEC 1 cation exchange capacity (CEC) 

for L1

meq/100g 14.9 Avocet lab results run 

on a composite 

sample from depth 2- 

multiple dates and 

reps

Clay L1 percent clay in L1 (% of soil 

volume); not used anywhere in 

the model

unitless 0 NA

Clay L2 percent clay in L2 (% of soil 

volume); not used anywhere in 

the model

unitless 0 NA

Coarse Frag % L1 coarse fragment (fragments 

>2.0mm in diameter) % in L1 (% 

of soil volume)

unitless 0.36 HRH (sieve analysis 

data)

Coarse Frag % L2 coarse fragment (fragments 

>2.0mm in diameter) % in L2 (% 

of soil volume)

unitless 0.17 HRH (sieve analysis 

data)

Permeability L1 permeability of L1; not used 

anywhere in the model

inches/hour 0 NA

Permeability L2 permeability of L2; not used 

anywhere in the model

inches/hour 0 NA

Plant AWHC L1 plant available water holding 

capacity (AWHC) for L1 

(inches/inches)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998

Plant AWHC L2 plant available water holding 

capacity (AWHC) for L2 

(inches/inches)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998

PWP 1 permanent wilting point (PWP) 

for L1 (soil water content @ 15 

bars; inch/inch)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998

PWP 2 permanent wilting point (PWP) 

for L2 (soil water content @ 15 

bars; inch/inch)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998

Salinity L1 salinity of L1; not used anywhere 

in the model

?? 0 NA

Salinity L2 salinity of L2; not used anywhere 

in the model

?? 0 NA

Soil pH L1 soil pH for L1 pH units 5.96 HRH (avg lysimeter 

water pH from all 

depth 2 lysimeters)

Soil pH L2 soil pH for L2; not used anywhere 

in the model

pH units 0 NA

AWHC L3 plant available water holding 

capacity (AWHC) for L3 

(inches/inches)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998

Coarse Frag % L3 coarse fragment (fragments 

>2.0mm in diameter) % in L3 (% 

of soil volume)

unitless 0.30 HRH (sieve analysis 

data)

Coarse Frag % LS coarse fragment (fragments 

>2.0mm in diameter) % in LS 

(% of soil volume)

unitless 0.39 HRH (sieve analysis 

data)

PWP 3 permanent wilting point (PWP) 

for L2 (soil water content @ 15 

bars; inch/inch)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998

Soil OM 

characteristics

Soil OrgM % LS initial soil organic matter % for 

LS; will vary depending on the 

soil type in the simulation run

unitless 8.03 HRH (avg OM% for 

depth 1 from Muffle 

Furnace test)

Soil OrgM % L1 initial soil organic matter % for 

L1; will vary depending on the 

soil type in the simulation run

unitless 7.68 HRH (avg OM% for 

depths 1&2 from 

Muffle Furnace test)

Soil OrgM CN  LS C:N ratio of the initial soil organic 

matter in LS (default=10)

unitless 12.0 HRH (avg C:N ratio for 

depth 1 from UW 

analysis)

Soil OrgM CN  L1 C:N ratio of the initial soil organic 

matter in L1 (default=10)

unitless 12.2 HRH (avg C:N ratio for 

depths 1&2 from UW 

analysis)

Soil OrgM % C LS percent carbon of the initial soil 

organic matter in LS (default=58)

unitless 28.5 HRH (avg C:N ratio for 

depth 1 from UW 

analysis)

Soil OrgM % C L1 percent carbon of the initial soil 

organic matter in L1 (default=58)

unitless 28.3 HRH (avg C:N ratio for 

depths 1&2 from UW 

analysis)

Soil Management

Use nitrif inhibitor a switch to indicate if a 

nitrification inhibitor has been 

used

unitless 0 HRH observation

Tillage classification code to indicate the type of 

tillage applied

unitless 3 HRH observation

Planted & tilled on 

Contour

code to indicate whether the field 

is planted on contour or not

unitless 0 HRH observation

Terraced Field code to indicate whether the field 

is terraced or not

unitless 0 HRH observation

Tile drainage 

classification

code to indicate the presence or 

absence of tile drainage

unitless 0 HRH observation

Initial soil water and 

nitrogen

Initial H2O LS initial soil water for LS inches/inche

s

0.38 HRH (avg by soil 

layer; converted 

gravimetric soil moist 

to volumetric by 

multiplying by the 

bulk density; samples 

collected on 3/24/04, 

the start date)

Initial H2O L1 initial soil water for L1 inches/inche

s

0.38 HRH (avg by soil 

layer; converted 

gravimetric soil moist 

to volumetric by 

multiplying by the 

bulk density; samples 

collected on 3/24/04, 

the start date)

Initial H2O L2 initial soil water for L2 inches/inche

s

0.37 HRH (avg by soil 

layer; converted 

gravimetric soil moist 

to volumetric by 

multiplying by the 

bulk density; samples 

collected on 3/24/04, 

the start date)

Initial H2O L3 initial soil water for L3 inches/inche

s

0.36 HRH (avg by soil 

layer; converted 

gravimetric soil moist 

to volumetric by 

multiplying by the 

bulk density; samples 

collected on 3/24/04, 

the start date)

Continued on next page… 
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Soil physical 

characteristics

Bulk Density LS bulk density for LS g/cm3 1.12 Agassiz data from 

field 9419- all 

treatments (first 3" 

meas)

Bulk Density L1 bulk density for L1 g/cm3 1.13 Agassiz data from 

field 9419- all 

treatments (avg of 3-

12" meas)

Bulk Density L2 bulk density for L2 g/cm3 1.15 Agassiz data from 

field 9419- all 

treatments (avg of 13-

19" meas)

Bulk Density L3 bulk density for L3 g/cm3 1.15 Agassiz data from 

field 9419- all 

treatments (avg of 13-

19" meas)

CEC 1 cation exchange capacity (CEC) 

for L1

meq/100g 14.9 Avocet lab results run 

on a composite 

sample from depth 2- 

multiple dates and 

reps

Clay L1 percent clay in L1 (% of soil 

volume); not used anywhere in 

the model

unitless 0 NA

Clay L2 percent clay in L2 (% of soil 

volume); not used anywhere in 

the model

unitless 0 NA

Coarse Frag % L1 coarse fragment (fragments 

>2.0mm in diameter) % in L1 (% 

of soil volume)

unitless 0.36 HRH (sieve analysis 

data)

Coarse Frag % L2 coarse fragment (fragments 

>2.0mm in diameter) % in L2 (% 

of soil volume)

unitless 0.17 HRH (sieve analysis 

data)

Permeability L1 permeability of L1; not used 

anywhere in the model

inches/hour 0 NA

Permeability L2 permeability of L2; not used 

anywhere in the model

inches/hour 0 NA

Plant AWHC L1 plant available water holding 

capacity (AWHC) for L1 

(inches/inches)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998

Plant AWHC L2 plant available water holding 

capacity (AWHC) for L2 

(inches/inches)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998

PWP 1 permanent wilting point (PWP) 

for L1 (soil water content @ 15 

bars; inch/inch)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998

PWP 2 permanent wilting point (PWP) 

for L2 (soil water content @ 15 

bars; inch/inch)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998

Salinity L1 salinity of L1; not used anywhere 

in the model

?? 0 NA

Salinity L2 salinity of L2; not used anywhere 

in the model

?? 0 NA

Soil pH L1 soil pH for L1 pH units 5.96 HRH (avg lysimeter 

water pH from all 

depth 2 lysimeters)

Soil pH L2 soil pH for L2; not used anywhere 

in the model

pH units 0 NA

AWHC L3 plant available water holding 

capacity (AWHC) for L3 

(inches/inches)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998

Coarse Frag % L3 coarse fragment (fragments 

>2.0mm in diameter) % in L3 (% 

of soil volume)

unitless 0.30 HRH (sieve analysis 

data)

Coarse Frag % LS coarse fragment (fragments 

>2.0mm in diameter) % in LS 

(% of soil volume)

unitless 0.39 HRH (sieve analysis 

data)

PWP 3 permanent wilting point (PWP) 

for L2 (soil water content @ 15 

bars; inch/inch)

unitless 0.13 Typical value for a silt 

loam from Norton & 

Silvertooth, 1998

Soil OM 

characteristics

Soil OrgM % LS initial soil organic matter % for 

LS; will vary depending on the 

soil type in the simulation run

unitless 8.03 HRH (avg OM% for 

depth 1 from Muffle 

Furnace test)

Soil OrgM % L1 initial soil organic matter % for 

L1; will vary depending on the 

soil type in the simulation run

unitless 7.68 HRH (avg OM% for 

depths 1&2 from 

Muffle Furnace test)

Soil OrgM CN  LS C:N ratio of the initial soil organic 

matter in LS (default=10)

unitless 12.0 HRH (avg C:N ratio for 

depth 1 from UW 

analysis)

Soil OrgM CN  L1 C:N ratio of the initial soil organic 

matter in L1 (default=10)

unitless 12.2 HRH (avg C:N ratio for 

depths 1&2 from UW 

analysis)

Soil OrgM % C LS percent carbon of the initial soil 

organic matter in LS (default=58)

unitless 28.5 HRH (avg C:N ratio for 

depth 1 from UW 

analysis)

Soil OrgM % C L1 percent carbon of the initial soil 

organic matter in L1 (default=58)

unitless 28.3 HRH (avg C:N ratio for 

depths 1&2 from UW 

analysis)

Soil Management

Use nitrif inhibitor a switch to indicate if a 

nitrification inhibitor has been 

used

unitless 0 HRH observation

Tillage classification code to indicate the type of 

tillage applied

unitless 3 HRH observation

Planted & tilled on 

Contour

code to indicate whether the field 

is planted on contour or not

unitless 0 HRH observation

Terraced Field code to indicate whether the field 

is terraced or not

unitless 0 HRH observation

Tile drainage 

classification

code to indicate the presence or 

absence of tile drainage

unitless 0 HRH observation

Initial soil water and 

nitrogen

Initial H2O LS initial soil water for LS inches/inche

s

0.38 HRH (avg by soil 

layer; converted 

gravimetric soil moist 

to volumetric by 

multiplying by the 

bulk density; samples 

collected on 3/24/04, 

the start date)

Initial H2O L1 initial soil water for L1 inches/inche

s

0.38 HRH (avg by soil 

layer; converted 

gravimetric soil moist 

to volumetric by 

multiplying by the 

bulk density; samples 

collected on 3/24/04, 

the start date)

Initial H2O L2 initial soil water for L2 inches/inche

s

0.37 HRH (avg by soil 

layer; converted 

gravimetric soil moist 

to volumetric by 

multiplying by the 

bulk density; samples 

collected on 3/24/04, 

the start date)

Initial H2O L3 initial soil water for L3 inches/inche

s

0.36 HRH (avg by soil 

layer; converted 

gravimetric soil moist 

to volumetric by 

multiplying by the 

bulk density; samples 

collected on 3/24/04, 

the start date)
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Terraced Field code to indicate whether the field 

is terraced or not

unitless 0 HRH observation

Tile drainage 

classification

code to indicate the presence or 

absence of tile drainage

unitless 0 HRH observation

Initial soil water and 

nitrogen

Initial H2O LS initial soil water for LS inches/inches 0.38 HRH (avg by soil 

layer; converted 

gravimetric soil moist 

to volumetric by 

multiplying by the 

bulk density; samples 

collected on 3/24/04, 

the start date)

Initial H2O L1 initial soil water for L1 inches/inches 0.38 HRH (avg by soil 

layer; converted 

gravimetric soil moist 

to volumetric by 

multiplying by the 

bulk density; samples 

collected on 3/24/04, 

the start date)

Initial H2O L2 initial soil water for L2 inches/inches 0.37 HRH (avg by soil 

layer; converted 

gravimetric soil moist 

to volumetric by 

multiplying by the 

bulk density; samples 

collected on 3/24/04, 

the start date)

Initial H2O L3 initial soil water for L3 inches/inches 0.36 HRH (avg by soil 

layer; converted 

gravimetric soil moist 

to volumetric by 

multiplying by the 

bulk density; samples 

collected on 3/24/04, 

the start date)

Initial NH4 LS initial soil ammonium (NH4-N) in 

LS

lbs/acre 0.85 HRH (soil extract 

analysis; avg by soil 

layer; samples 

collected on 3/24/04, 

the start date)

Initial NH4 L1 initial soil ammonium (NH4-N) in 

L1

lbs/acre 10.2 HRH (soil extract 

analysis; avg by soil 

layer; samples 

collected on 3/24/04, 

the start date)

Initial NO3 LS initial soil nitrate (NO3-N) for LS lbs/acre 0.33 HRH (soil extract 

analysis; avg by soil 

layer; samples 

collected on 3/24/04, 

the start date)

Initial NO3 L1 initial soil nitrate (NO3-N) for L1 lbs/acre 4.0 HRH (soil extract 

analysis; avg by soil 

layer; samples 

collected on 3/24/04, 

the start date)

Initial NO3 L2 initial soil nitrate (NO3-N) for L2 lbs/acre 3.7 HRH (soil extract 

analysis; avg by soil 

layer; samples 

collected on 3/24/04, 

the start date)

Initial NO3 L3 initial soil nitrate (NO3-N) for L3 lbs/acre 6.1 HRH (soil extract 

analysis; avg by soil 

layer; samples 

collected on 3/24/04, 

the start date)

Crop Manager
Crop Type type of crop (annual, perennial, 

or fallow)

unitless 1 Derek Hunt, personal 

communication

Annual Crop 

Manager

Crop

Select Crop Ann[1] type of crop unitless 9 Derek Hunt, personal 

communication

Planting Dates

Select Crop AnnPD[1] planting date for crop 1 in julian 

dates

unitless 140 Frederic Bounaix, 

personal 

communication

Crop harvest dates

Select Crop annHD[1] harvest date for crop 1 in julian 

dates

unitless 272 Frederic Bounaix, 

personal 

communication

Crop N%

Select Crop Ann N%[1] concentration of N (N%) in the 

harvested crop as a percentage

unitless 1.15 Agri-Foods (Avg. 

whole plant (wp) Leco 

N%)

Crop moisture 

fraction (%)

Select Crop Ann 

H2Ofrac[1]

not used anywhere in the model; 

moisture content in the total 

harvested annual crop as a 

fraction

unitless 0.659 Agri-Foods (Avg. sub-

sample moisture from 

corn collected on 

harvest date 

(8/19/04))

Crop yield 

(tons/acre)

Selct Crop Ann 

MaxYld[1]

dry matter yield of the annual 

crop maximum harvest

tons/acre 7.44 Agri-Foods (Avg. dry 

matter yield from corn 

collected on harvest 

date (8/19/04))

Fertilizer 

Manager
Fertilizer type

Select fert type[Applic 

1]

code for the type of commercially 

available fertilizer or a custom 

blend

unitless 4 Frederic Bounaix, 

personal 

communication

Select fert type[Applic 

2]

code for the type of commercially 

available fertilizer or a custom 

blend

unitless 1 Frederic Bounaix, 

personal 

communication

Select fert type[Applic 

3]

code for the type of commercially 

available fertilizer or a custom 

blend

unitless 7 Frederic Bounaix, 

personal 

communication

Fertilizer method

Select fert applic 

method[Applic 1]

code for the fertilizer application 

method

unitless 2 Frederic Bounaix, 

personal 

communication

Select fert applic 

method[Applic 2]

code for the fertilizer application 

method

unitless 2 Frederic Bounaix, 

personal 

communication

Select fert applic 

method[Applic 3]

code for the fertilizer application 

method

unitless 2 Frederic Bounaix, 

personal 

communication
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Terraced Field code to indicate whether the field 

is terraced or not

unitless 0 HRH observation

Tile drainage 

classification

code to indicate the presence or 

absence of tile drainage

unitless 0 HRH observation

Initial soil water and 

nitrogen

Initial H2O LS initial soil water for LS inches/inches 0.38 HRH (avg by soil 

layer; converted 

gravimetric soil moist 

to volumetric by 

multiplying by the 

bulk density; samples 

collected on 3/24/04, 

the start date)

Initial H2O L1 initial soil water for L1 inches/inches 0.38 HRH (avg by soil 

layer; converted 

gravimetric soil moist 

to volumetric by 

multiplying by the 

bulk density; samples 

collected on 3/24/04, 

the start date)

Initial H2O L2 initial soil water for L2 inches/inches 0.37 HRH (avg by soil 

layer; converted 

gravimetric soil moist 

to volumetric by 

multiplying by the 

bulk density; samples 

collected on 3/24/04, 

the start date)

Initial H2O L3 initial soil water for L3 inches/inches 0.36 HRH (avg by soil 

layer; converted 

gravimetric soil moist 

to volumetric by 

multiplying by the 

bulk density; samples 

collected on 3/24/04, 

the start date)

Initial NH4 LS initial soil ammonium (NH4-N) in 

LS

lbs/acre 0.85 HRH (soil extract 

analysis; avg by soil 

layer; samples 

collected on 3/24/04, 

the start date)

Initial NH4 L1 initial soil ammonium (NH4-N) in 

L1

lbs/acre 10.2 HRH (soil extract 

analysis; avg by soil 

layer; samples 

collected on 3/24/04, 

the start date)

Initial NO3 LS initial soil nitrate (NO3-N) for LS lbs/acre 0.33 HRH (soil extract 

analysis; avg by soil 

layer; samples 

collected on 3/24/04, 

the start date)

Initial NO3 L1 initial soil nitrate (NO3-N) for L1 lbs/acre 4.0 HRH (soil extract 

analysis; avg by soil 

layer; samples 

collected on 3/24/04, 

the start date)

Initial NO3 L2 initial soil nitrate (NO3-N) for L2 lbs/acre 3.7 HRH (soil extract 

analysis; avg by soil 

layer; samples 

collected on 3/24/04, 

the start date)

Initial NO3 L3 initial soil nitrate (NO3-N) for L3 lbs/acre 6.1 HRH (soil extract 

analysis; avg by soil 

layer; samples 

collected on 3/24/04, 

the start date)

Crop Manager
Crop Type type of crop (annual, perennial, 

or fallow)

unitless 1 Derek Hunt, personal 

communication

Annual Crop 

Manager

Crop

Select Crop Ann[1] type of crop unitless 9 Derek Hunt, personal 

communication

Planting Dates

Select Crop AnnPD[1] planting date for crop 1 in julian 

dates

unitless 140 Frederic Bounaix, 

personal 

communication

Crop harvest dates

Select Crop annHD[1] harvest date for crop 1 in julian 

dates

unitless 272 Frederic Bounaix, 

personal 

communication

Crop N%

Select Crop Ann N%[1] concentration of N (N%) in the 

harvested crop as a percentage

unitless 1.15 Agri-Foods (Avg. 

whole plant (wp) Leco 

N%)

Crop moisture 

fraction (%)

Select Crop Ann 

H2Ofrac[1]

not used anywhere in the model; 

moisture content in the total 

harvested annual crop as a 

fraction

unitless 0.659 Agri-Foods (Avg. sub-

sample moisture from 

corn collected on 

harvest date 

(8/19/04))

Crop yield 

(tons/acre)

Selct Crop Ann 

MaxYld[1]

dry matter yield of the annual 

crop maximum harvest

tons/acre 7.44 Agri-Foods (Avg. dry 

matter yield from corn 

collected on harvest 

date (8/19/04))

Fertilizer 

Manager
Fertilizer type

Select fert type[Applic 

1]

code for the type of commercially 

available fertilizer or a custom 

blend

unitless 4 Frederic Bounaix, 

personal 

communication

Select fert type[Applic 

2]

code for the type of commercially 

available fertilizer or a custom 

blend

unitless 1 Frederic Bounaix, 

personal 

communication

Select fert type[Applic 

3]

code for the type of commercially 

available fertilizer or a custom 

blend

unitless 7 Frederic Bounaix, 

personal 

communication

Fertilizer method

Select fert applic 

method[Applic 1]

code for the fertilizer application 

method

unitless 2 Frederic Bounaix, 

personal 

communication

Select fert applic 

method[Applic 2]

code for the fertilizer application 

method

unitless 2 Frederic Bounaix, 

personal 

communication

Select fert applic 

method[Applic 3]

code for the fertilizer application 

method

unitless 2 Frederic Bounaix, 

personal 

communication
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Crop yield 

(tons/acre)

Selct Crop Ann 

MaxYld[1]

dry matter yield of the annual 

crop maximum harvest

tons/acre 7.44 Agri-Foods (Avg. dry 

matter yield from corn 

collected on harvest 

date (8/19/04))

Fertilizer 

Manager
Fertilizer type

Select fert type[Applic 

1]

code for the type of commercially 

available fertilizer or a custom 

blend

unitless 4 Frederic Bounaix, 

personal 

communication

Select fert type[Applic 

2]

code for the type of commercially 

available fertilizer or a custom 

blend

unitless 1 Frederic Bounaix, 

personal 

communication

Select fert type[Applic 

3]

code for the type of commercially 

available fertilizer or a custom 

blend

unitless 7 Frederic Bounaix, 

personal 

communication

Fertilizer method

Select fert applic 

method[Applic 1]

code for the fertilizer application 

method

unitless 2 Frederic Bounaix, 

personal 

communication

Select fert applic 

method[Applic 2]

code for the fertilizer application 

method

unitless 2 Frederic Bounaix, 

personal 

communication

Select fert applic 

method[Applic 3]

code for the fertilizer application 

method

unitless 2 Frederic Bounaix, 

personal 

communication

Fertilizer amount

Select fert 

amount[Applic 1]

amount of fertilizer applied lbs/acre 260 Frederic Bounaix, 

personal 

communication

Select fert 

amount[Applic 2]

amount of fertilizer applied lbs/acre 130 Frederic Bounaix, 

personal 

communication

Select fert 

amount[Applic 3]

amount of fertilizer applied lbs/acre 250 Frederic Bounaix, 

personal 

communication

Fertilization date

Select fert date[Applic 

1]

application date in julian dates unitless 140 Frederic Bounaix, 

personal 

communication

Select fert date[Applic 

2]

application date in julian dates unitless 140 Frederic Bounaix, 

personal 

communication

Select fert date[Applic 

3]

application date in julian dates unitless 140 Frederic Bounaix, 

personal 

communication

Tillage 

Manager
Tillage type code

Select Tillage 

Type[Tillage 1]

code for the type of tillage unitless 2 HRH observation

Date of tillage

Select Tillage 

Date[Tillage 1]

date of tillage in julian dates unitless 0 HRH observation

Tillage depth

Tillage Depth[No Till] depth of tillage can be entered 

here if it varies from the default

inches 0 HRH observation

Climate Data
T Max maximum daily temperature degrees C data cd http://www.climate.w

eatheroffice.ec.gc.ca 

& some missing points 

from 

http://historical.farmz

one.com

T Min minimum daily temperature degrees C data cd http://www.climate.w

eatheroffice.ec.gc.ca

Rainfall in mm daily total amount of precipitation mm data cd http://www.climate.w

eatheroffice.ec.gc.ca 

& some missing points 

from 

http://historical.farmz

one.com

ET in mm estimation of evapotranspiration mm data cd www.farmwest.com

Select Internal Model Parameters
Effective Precip the effective precipitation amount 

below which certain activities, 

like runoff and counting the day 

as a wet day for denitrification, 

do not occur

unitless 0.21 default value

CCFAC A a crop correction factor for crop 

yields less than the crop 

maximum; calculated as a ratio 

of yield goal / crop maximum 

yield 

unitless 0.87 default value

Particle density LS used in the equation for 

calculating the porosity of the 

surface layer (POR_LS)

g/cm
3 2.65 default value

Particle density L1 used in the equation for 

calculating the porosity of the 

surface layer (POR1)

g/cm
3 2.65 default value

Particle density L2 used in the equation for 

calculating the porosity of the 

surface layer (POR2)

g/cm
3 2.65 default value

Particle density L3 used in the equation for 

calculating the porosity of the 

surface layer (POR3)

g/cm
3 2.65 default value

Runoff adjust factor  an adjustment factor for runoff; 

can be changed by the user to 

reflect local conditions

unitless 0 default value

K N2O Leakage a fraction representing the 

maximum leakage of N2O from 

unitless 0.065 default value
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Tillage 

Manager
Tillage type code

Select Tillage 

Type[Tillage 1]

code for the type of tillage unitless 2 HRH observation

Date of tillage

Select Tillage 

Date[Tillage 1]

date of tillage in julian dates unitless 0 HRH observation

Tillage depth

Tillage Depth[No Till] depth of tillage can be entered 

here if it varies from the default

inches 0 HRH observation

Climate Data
T Max maximum daily temperature degrees C data cd http://www.climate.w

eatheroffice.ec.gc.ca 

& some missing points 

from 

http://historical.farmz

one.com

T Min minimum daily temperature degrees C data cd http://www.climate.w

eatheroffice.ec.gc.ca

Rainfall in mm daily total amount of precipitation mm data cd http://www.climate.w

eatheroffice.ec.gc.ca 

& some missing points 

from 

http://historical.farmz

one.com

ET in mm estimation of evapotranspiration mm data cd www.farmwest.com

Select Internal Model Parameters
Effective Precip the effective precipitation amount 

below which certain activities, 

like runoff and counting the day 

as a wet day for denitrification, 

do not occur

unitless 0.21 default value

CCFAC A a crop correction factor for crop 

yields less than the crop 

maximum; calculated as a ratio 

of yield goal / crop maximum 

yield 

unitless 0.87 default value

Particle density LS used in the equation for 

calculating the porosity of the 

surface layer (POR_LS)

g/cm
3 2.65 default value

Particle density L1 used in the equation for 

calculating the porosity of the 

surface layer (POR1)

g/cm
3 2.65 default value

Particle density L2 used in the equation for 

calculating the porosity of the 

surface layer (POR2)

g/cm
3 2.65 default value

Particle density L3 used in the equation for 

calculating the porosity of the 

surface layer (POR3)

g/cm
3 2.65 default value

Runoff adjust factor  an adjustment factor for runoff; 

can be changed by the user to 

reflect local conditions

unitless 0 default value

K N2O Leakage a fraction representing the 

maximum leakage of N2O from 

the nitrification process

unitless 0.065 default value
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Table 3. Crop management and sample collection events. 

Calendar Date Julian Date Action Notes

4/6/04 97 Herbicide applied Roundup applied.

5/19/04 140 Seeded No-till planting of silage corn. 

The areas around the 

lysimeters (~15-20 ft in each 

direction) were hand-seeded to 

avoid damage by equipment.

5/19/04 140 Fertilization Side-dressed 489 lbs of 

superphosphate (P2O5; 45% 

phosphorus (0-45-0)) at same 

time as seeding (missed rows 

1&2) using John Deere Model 

7200 4-row corn planter.

Hand-applied superphosphate 

to the 2 rows on either side of 

the N2O chambers.

Surface broadcast Triple 18 

(NH3, P2O5, K2O @ 18% each) 

at 495 lbs/acre (89 lbs-

N/acre).
Surface broadcast 34.5% 

Ammonium-nitrate @ 259 

lbs/acre (89 lbs-N/acre).

8/19/04 232 Crop sample collection Samples collected in a 2-row x 

8-foot area (40 ft
2
) for dry 

matter yield and crop moisture.

9/28/04 272 Crop harvest and sample 

collection

Samples collected in a 2-row x 

12-foot area (60 ft
2
) for dry 

matter yield, crop moisture, 

and crop N%.  
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Table 4. Bulk density depth ranges and average values by soil layer. 

Soil layer
Defined soil layer 

depths (in)
Min. Max.

Average bulk density 

by soil layer (g/cm
3
)

LS 0-1 3 3 1.12

L1 0-12 3 4 1.13

L2 12-24 13 19 1.15

L3 24-45 13 19 1.15

Bulk density values 

depth range (in)
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Table 5. Summary statistics for the initial soil data collected on March 24, 2004. 

 

Summary Statistic cn coarsefrag om moist soil.nh4 soil.no3

Minimum 11.06 0.01 6.01 0.26 89.52 71.24

1st Quadrant 11.84 0.03 7.20 0.30 123.28 101.79

Median 12.25 0.08 7.81 0.32 188.11 115.79

Mean 12.24 0.30 7.68 0.32 219.88 123.57

3rd Quadrant 12.62 0.24 7.94 0.35 328.04 135.46

Maximum 13.50 1.72 9.39 0.38 417.49 208.92

cn = carbon to nitrogen ratio of organic matter (unitless)

coarsefrag = coarse fragment percentage (g/g)

om = organic matter content (% of dry weight)

moist = soil moisture (g/g)

soil.nh4 = soil ammonium (!g NH4-N/L)

soil.no3 = soil nitrate (!g NO3-N/L)  
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Table 6. Soil water sub-model sensitivity analysis inputs and data. 

Base output of water leached (inches): 57.6

Input parameter Base input Units +60% input -60% input
+60% 

output

-60% 

output

% change w/ 

+60% input

% change w/ -

60% input

Avg. % 

change

AWHC L3 0.13 in/in 0.21 0.052 55.9 59.2 2.9 2.8 2.9

Bulk Density L1 1.13 g/cm
3 1.81 0.45 57.6 57.6 0.0 0.0 0.0

Bulk Density L2 1.15 g/cm
3 1.84 0.46 57.6 57.6 0.0 0.0 0.0

Bulk Density L3 1.15 g/cm
3 1.84 0.46 57.6 57.6 0.0 0.0 0.0

Bulk Density LS 1.12 g/cm
3 1.792 0.448 57.6 57.6 0.0 0.0 0.0

CEC 1 14.9 meq/100g 23.84 5.96 57.6 57.6 0.0 0.0 0.0

Coarse Frag % L1 0.36 g/g 0.576 0.144 57.6 57.6 0.0 0.0 0.0

Coarse Frag % L2 0.17 g/g 0.272 0.068 57.6 57.6 0.0 0.0 0.0

Coarse Frag % L3 0.30 g/g 0.48 0.12 57.6 57.6 0.0 0.0 0.0

Coarse Frag % LS 0.39 g/g 0.624 0.156 57.6 57.6 0.0 0.0 0.0

consol evap depth heavy 2 in 3.2 0.8 57.6 57.6 0.0 0.0 0.0

consol evap depth light 4 in 6.4 1.6 57.6 57.6 0.0 0.0 0.0

Initial H2O L1 0.38 in/in 0.608 0.152 60.3 54.9 4.8 4.7 4.7

Initial H2O L2 0.37 in/in 0.592 0.148 60.2 54.9 4.6 4.6 4.6

Initial H2O L3 0.36 in/in 0.576 0.144 62.1 53.0 7.9 7.9 7.9

Initial H2O LS 0.38 in/in 0.608 0.152 57.6 57.6 0.0 0.0 0.0

Initial NH4 L1 10.20 in/in 16.32 4.08 57.6 57.6 0.0 0.0 0.0

Initial NH4 LS 0.85 in/in 1.36 0.34 57.6 57.6 0.0 0.0 0.0

Initial NO3 L1 4.00 lbs/acre 6.4 1.6 57.6 57.6 0.0 0.0 0.0

Initial NO3 L2 3.70 lbs/acre 5.92 1.48 57.6 57.6 0.0 0.0 0.0

Initial NO3 L3 6.10 lbs/acre 9.76 2.44 57.6 57.6 0.0 0.0 0.0

Initial NO3 LS 0.33 lbs/acre 0.528 0.132 57.6 57.6 0.0 0.0 0.0

Percent slope 4.5 unitless 7.2 1.8 57.6 57.6 0.0 0.0 0.0

Plant AWHC L1 0.13 in/in 0.208 0.052 54.7 63.0 5.0 9.5 7.2

Plant AWHC L2 0.13 in/in 0.208 0.052 56.6 59.5 1.8 3.3 2.5

PWP 1 0.13 in/in 0.208 0.052 56.6 58.5 1.6 1.6 1.6

PWP 2 0.13 in/in 0.208 0.052 56.6 58.5 1.6 1.6 1.6

PWP 3 0.13 in/in 0.208 0.052 55.9 59.2 2.8 2.8 2.8

Select Crop Ann H2Ofrac[1] 0.659 unitless 1.05 0.26 57.6 57.6 0.0 0.0 0.0

Soil OrgM % C L1 28.3 unitless 45.3 11.3 57.6 57.6 0.0 0.0 0.0

Soil OrgM % C LS 28.5 unitless 45.6 11.4 57.6 57.6 0.0 0.0 0.0

Soil OrgM % L1 7.68 unitless 12.3 3.1 57.6 57.6 0.0 0.0 0.0

Soil OrgM % LS 8.03 unitless 12.8 3.2 57.6 57.6 0.0 0.0 0.0

Soil OrgM CN  L1 12.2 unitless 19.5 4.9 57.6 57.6 0.0 0.0 0.0

Soil OrgM CN  LS 12.0 unitless 19.2 4.8 57.6 57.6 0.0 0.0 0.0

Soil pH L1 5.96 pH units 9.54 2.38 57.6 57.6 0.0 0.0 0.0

ET * mm * * 52.2 66.7 9.3 16 13

Rainfall * mm * * 99.6 17.9 73 69 71

T Min * deg. C * * 57.6 57.6 0.034 0.048 0.041

T Max * deg. C * * 57.5 57.6 0.17 0.0 0.085

Internal model parameter

Effective precipitation 0.21 unitless 0.336 0.084 57.6 57.6 0.0 0.0 0.0

Runoff Adjust Factor 0.0 unitless 1 0 36.9 57.6 35.8 0.0 18

CCFAC A 0.87 unitless 1.4 0.35 57.2 58.5 0.7 1.7 1.2

particle density LS 2.65 g/cm
3 4.24 1.06 57.6 57.6 0.0 0.0 0.0

particle density L1 2.65 g/cm
3 4.24 1.06 57.6 57.6 0.0 0.0 0.0

particle density L2 2.65 g/cm
3 4.24 1.06 57.6 57.6 0.0 0.0 0.0

particle density L3 2.65 g/cm
3 4.24 1.06 57.6 57.6 0.0 0.0 0.0

K N2O Leakage 0.065 unitless 0.104 0.026 58 58 0.0 0.0 0.0

*See climate data table for climate inputs  
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Table 7. Nitrogen dynamics sub-model sensitivity inputs and data. 

Base output of nitrate leached (lbs NO3-N/acre): 132

Input parameter Base input Units +60% input -60% input
+60% 

output

-60% 

output

% change w/ 

+60% input

% change w/ -

60% input

Avg. % 

change

AWHC L3 0.13 in/in 0.21 0.052 132 312 0.0 136 68

Bulk Density L1 1.13 g/cm
3 1.81 0.45 222 47 68 65 66

Bulk Density L2 1.15 g/cm
3 1.84 0.46 140 126 5.5 4.5 5.0

Bulk Density L3 1.15 g/cm
3 1.84 0.46 140 124 5.8 6.7 6.3

Bulk Density LS 1.12 g/cm
3 1.792 0.448 133 133 0.52 0.50 0.51

CEC 1 14.9 meq/100g 23.84 5.96 132 129 0.0 2.5 1.2

Coarse Frag % L1 0.36 g/g 0.576 0.144 132 134 0.74 0.96 0.85

Coarse Frag % L2 0.17 g/g 0.272 0.068 132 133 0.0 0.0 0.0

Coarse Frag % L3 0.30 g/g 0.48 0.12 132 133 0.0 0.0 0.0

Coarse Frag % LS 0.39 g/g 0.624 0.156 133 132 0.59 0.28 0.44

consol evap depth heavy 2 in 3.2 0.8 132 132 0.0 0.0 0.0

consol evap depth light 4 in 6.4 1.6 132 132 0.0 0.0 0.0

Initial H2O L1 0.38 in/in 0.608 0.152 133 133 0.48 0.09 0.28

Initial H2O L2 0.37 in/in 0.592 0.148 133 131 0.43 0.78 0.60

Initial H2O L3 0.36 in/in 0.576 0.144 133 132 0.0 0.0 0.0

Initial H2O LS 0.38 in/in 0.608 0.152 132 132 0.0 0.0 0.0

Initial NH4 L1 10.20 in/in 16.32 4.08 136 129 2.7 2.6 2.7

Initial NH4 LS 0.85 in/in 1.36 0.34 133 132 0.23 0.27 0.25

Initial NO3 L1 4.00 lbs/acre 6.4 1.6 134 131 0.92 0.92 0.92

Initial NO3 L2 3.70 lbs/acre 5.92 1.48 134 131 1.0 1.0 1.0

Initial NO3 L3 6.10 lbs/acre 9.76 2.44 136 129 2.7 2.7 2.7

Initial NO3 LS 0.33 lbs/acre 0.528 0.132 133 132 0.08 0.08 0.08

Percent slope 4.5 unitless 7.2 1.8 132 132 0.0 0.0 0.0

Plant AWHC L1 0.13 in/in 0.208 0.052 168 104 26.8 21.4 24.1

Plant AWHC L2 0.13 in/in 0.208 0.052 132 133 0.21 0.20 0.20

PWP 1 0.13 in/in 0.208 0.052 186 92 41 31 36

PWP 2 0.13 in/in 0.208 0.052 132 146 0.21 10 5.3

PWP 3 0.13 in/in 0.208 0.052 132 132 0.0 0.0 0.0

Select Crop Ann H2Ofrac[1] 0.659 unitless 1.05 0.26 132 132 0.0 0.0 0.0

Soil OrgM % C L1 28.3 unitless 45.3 11.3 203 61 54 54 54

Soil OrgM % C LS 28.5 unitless 45.6 11.4 133 133 0.51 0.39 0.45

Soil OrgM % L1 7.68 unitless 12.3 3.1 204 67 54 50 52

Soil OrgM % LS 8.03 unitless 12.8 3.2 133 133 0.28 0.29 0.28

Soil OrgM CN  L1 12.2 unitless 19.5 4.9 132 135 0.71 1.6 1.1

Soil OrgM CN  LS 12.0 unitless 19.2 4.8 132 133 0.08 0.06 0.07

Soil pH L1 5.96 pH units 9.54 2.38 128 132 3.6 0.0 1.8

ET in mm * mm * * 126 157 5.0 18 12

Rainfall in mm * mm * * 151 48 14 64 39

T Min * deg. C * * 146 120 10 9.7 9.9

T Max * deg. C * * 164 105 24 20 22

Internal model parameter

Effective precipitation 0.21 unitless 0.336 0.084 140 113 5.4 15 10

Runoff Adjust Factor 0.0 unitless 1 0 91 132 31 0.0 16

CCFAC A 0.87 unitless 1.4 0.35 131 133 1.4 0.34 0.86

particle density LS 2.65 g/cm
3 4.24 1.06 132 132 0.0 0.0 0.0

particle density L1 2.65 g/cm
3 4.24 1.06 99 8.2 25 94 59

particle density L2 2.65 g/cm
3 4.24 1.06 129 6.1 2.9 95 49

particle density L3 2.65 g/cm
3 4.24 1.06 127 0.0 4.1 100 52

K N2O Leakage 0.065 unitless 0.104 0.026 130 134 1.9 1.5 1.7

*See climate data table for climate inputs  
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Table 8. Soil water sub-model sensitivity analysis ranks. 
Rank Input Avg. % Change

1 Rainfall in mm 71

2 Runoff Adjust Factor* 18

3 ET in mm 13

4 Initial H2O L3* 7.9

5 Plant AWHC L1* 7.2

6 Initial H2O L1* 4.7

7 Initial H2O L2* 4.6

8 AWHC L3* 2.9

9 PWP 3* 2.8

10 Plant AWHC L2* 2.5

11 PWP 1* 1.6

12 PWP 2* 1.6

13 CCFAC A* 1.2

14 T Max 0.085

15 T Min 0.041

16 Bulk Density L1 0.0

17 Bulk Density L2 0.0

18 Bulk Density L3 0.0

19 Bulk Density LS 0.0

20 CEC 1 0.0

21 Coarse Frag % L1 0.0

22 Coarse Frag % L2 0.0

23 Coarse Frag % L3 0.0

24 Coarse Frag % LS 0.0

25 consol evap depth heavy 0.0

26 consol evap depth light 0.0

27 Initial H2O LS 0.0

28 Initial NH4 L1 0.0

29 Initial NH4 LS 0.0

30 Initial NO3 L1 0.0

31 Initial NO3 L2 0.0

32 Initial NO3 L3 0.0

33 Initial NO3 LS 0.0

34 Percent slope 0.0

35 Select Crop Ann H2Ofrac[1] 0.0

36 Soil OrgM % C L1 0.0

37 Soil OrgM % C LS 0.0

38 Soil OrgM % L1 0.0

39 Soil OrgM % LS 0.0

40 Soil OrgM CN  L1 0.0

41 Soil OrgM CN  LS 0.0

42 Soil pH L1 0.0

43 Effective precipitation 0.0

44 particle density LS 0.0

45 particle density L1 0.0

46 particle density L2 0.0

47 particle density L3 0.0

48 K N2O Leakage 0.0

*Inputs used in the water sub-model calibration. Excludes climate inputs.  
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Table 9. Nitrogen dynamics sub-model sensitivity analysis ranks. 
Rank Input Avg. % Change

1 AWHC L3* 68

2 Bulk Density L1* 66

3 particle density L1* 59

4 Soil OrgM % C L1* 54

5 particle density L3* 52

6 Soil OrgM % L1* 52

7 particle density L2* 49

8 Rainfall in mm 39

9 PWP 1* 36

10 Plant AWHC L1* 24

11 T Max 22

12 Runoff Adjust Factor* 16

13 ET in mm 12

14 Effective precipitation* 10

15 T Min 9.9

16 Bulk Density L3* 6.3

17 PWP 2* 5.3

18 Bulk Density L2* 5.0

19 Initial NO3 L3 2.7

20 Initial NH4 L1 2.7

21 Soil pH L1 1.8

22 K N2O Leakage 1.7

23 CEC 1 1.2

24 Soil OrgM CN  L1 1.1

25 Initial NO3 L2 0.98

26 Initial NO3 L1 0.92

27 CCFAC A 0.86

28 Coarse Frag % L1 0.85

29 Initial H2O L2 0.60

30 Bulk Density LS 0.51

31 Soil OrgM % C LS 0.45

32 Coarse Frag % LS 0.44

33 Soil OrgM % LS 0.28

34 Initial H2O L1 0.28

35 Initial NH4 LS 0.25

36 Plant AWHC L2 0.20

37 Initial NO3 LS 0.08

38 Soil OrgM CN  LS 0.07

39 Coarse Frag % L3 0.02

40 Coarse Frag % L2 0.01

41 Initial H2O L3 0.01

42 PWP 3 0.0023

43 consol evap depth heavy 0.0

44 consol evap depth light 0.0

45 Initial H2O LS 0.0

46 Percent slope 0.0

47 Select Crop Ann H2Ofrac[1] 0.0

48 particle density LS 0.0

*Inputs used in the nitrogen  sub-model calibration. Effected at 

least a 5% change on the nitrate leached output. Excludes climate 

inputs.
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Table 10. Uncertainty analysis inputs. 

Input parameter Base Value Minimum Value Maximum Value Units Data source

Bulk Density L1 1.13 1.02 1.26 g/cm
3

max/min measured values for specified soil layer 

depth from 1997 study on field 9420

Bulk Density L2 1.15 0.99 1.30 g/cm
3

max/min measured values for specified soil layer 

depth from 1997 study on field 9421

Bulk Density L3 1.15 0.99 1.30 g/cm
3

max/min measured values for specified soil layer 

depth from 1997 study on field 9422

Bulk Density LS 1.12 1.02 1.18 g/cm
3

max/min measured values for specified soil layer 

depth from 1997 study on field 9419

CEC 1 14.9 10.9 17.0 meq/100g
min/max for a Monroe silt loam from the Agassiz 

soil survey

Coarse Frag % L1 0.36 0.03 1.34 unitless min/max of all measurements by soil layer

Coarse Frag % L2 0.17 0.01 0.52 unitless min/max of all measurements by soil layer

Coarse Frag % L3 0.30 0.02 1.72 unitless min/max of all measurements by soil layer

Coarse Frag % LS 0.39 0.06 1.34 unitless min/max of all measurements by soil layer

consol evap depth heavy 2 1 3 inches
min is the default minus 1/3 and max is the 

default plus 1/3

consol evap depth light 4 3 5 inches
min is the default minus 1/3 and max is the 

default plus 1/3

Initial H2O L1 0.38 0.32 0.43 inch/inch
min/max of initial gravimetric soil moisture data 

by soil layer

Initial H2O L2 0.37 0.30 0.44 inch/inch
min/max of initial gravimetric soil moisture data 

by soil layer

Initial H2O L3 0.36 0.33 0.39 inch/inch
min/max of initial gravimetric soil moisture data 

by soil layer

Initial H2O LS 0.38 0.32 0.43 inch/inch
min/max of initial gravimetric soil moisture data 

by soil layer

Initial NH4 L1 10.2 7.7 12.4 lbs NH4-N/acre
min/max of initial soil extract nutrient data by soil 

layer

Initial NH4 LS 0.85 0.64 1.0 lbs NH4-N/acre
min/max of initial soil extract nutrient data by soil 

layer

Initial NO3 L1 4.0 2.9 6.2 lbs NO3-N/acre
min/max of initial soil extract nutrient data by soil 

layer

Initial NO3 L2 3.7 2.2 5.5 lbs NO3-N/acre
min/max of initial soil extract nutrient data by soil 

layer

Initial NO3 L3 6.1 4.6 9.5 lbs NO3-N/acre
min/max of initial soil extract nutrient data by soil 

layer

Initial NO3 LS 0.33 0.25 0.52 lbs NO3-N/acre
min/max of initial soil extract nutrient data by soil 

layer

Percent slope 4.5 0 9 unitless
range of percent slope values from Agassiz Soil 

Survey

Plant AWHC L1 0.13 0.11 0.13 in/in

min is the Plant AWHC for a loam from Brady 

(1974) and the initial value and the maximum 

value are the Plant AWHC was for a silt loam

Plant AWHC L2 0.13 0.11 0.13 in/in

min is the Plant AWHC for a loam from Brady 

(1974) and the initial value and the maximum 

value are the Plant AWHC was for a silt loam

Plant AWHC L3 0.13 0.11 0.13 in/in

min is the Plant AWHC for a loam from Brady 

(1974) and the initial value and the maximum 

value are the Plant AWHC was for a silt loam

PWP 1 0.13 0.11 0.16 in/in
min is the PWP for a loam  and max is the PWP 

for a clay loam from Brady (1974)

PWP 2 0.13 0.11 0.16 in/in
min is the PWP for a loam  and max is the PWP 

for a clay loam from Brady (1974)

PWP 3 0.13 0.11 0.16 in/in
min is the PWP for a loam  and max is the PWP 

for a clay loam from Brady (1974)

Select Crop Ann H2Ofrac[1] 0.659 0.650 0.673 unitless min/max final corn harvest moisture fractions

Select Crop Ann MaxYld[1] 7.44 6.88 8.35 tons/acre min/max final corn harvest yield measurements

Select Crop Ann N%[1] 1.15 0.93 1.34 unitless
min/max of final corn harvest Leco N% 

measurements

Soil OrgM % C L1 28.3 23.6 29.7 unitless min/max of all measurements by soil layer

Soil OrgM % C LS 28.5 21.1 29.7 unitless min/max of all measurements by soil layer

Soil OrgM % L1 7.68 6.01 9.39 unitless min/max of all measurements by soil layer

Soil OrgM % LS 8.03 7.26 9.39 unitless min/max of all measurements by soil layer

Soil OrgM CN  L1 12.2 11.1 13.5 unitless min/max of all measurements by soil layer

Soil OrgM CN  LS 12.0 11.1 12.9 unitless min/max of all measurements by soil layer

Soil pH L1 5.96 5.31 6.39 pH units
min/max of all measured values in depth 2 

lysimeter samples
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Table 11. Model calibration efficiency coefficients (Ef). 

Model output

Number of 

observations Uncalibrated Ef Calibrated Ef

Overall model average -2.19 -0.17

Overall soil water sub-

model average
-1.82 -0.63

SOIL WATER L1 28 -0.84 -0.86

SOIL WATER L2 10 -1.80 -0.38

SOIL WATER L3 10 -2.84 -0.64

Overall nitrogen sub-

model average
-2.34 0.02

LYS NO3 L2 10 -0.39 -0.32

LYS NO3 L3 10 -0.50 -0.43

SOIL NO3 L1 26 0.76 0.71

SOIL NO3 L2 13 -0.44 -0.42

SOIL NO3 L3 12 -0.39 -0.36

SOIL NH4 L1 26 0.65 0.64

N2O 28 -16.08 0.31  
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Table 12. Soil-water sub-model calibration parameters. 

Soil Water Sub-Model Calibration

Model parameter Units
Base 

value

Calibrated 

value

Allowable 

Min.

Allowable 

Max.

Min./Max. Data 

Source
Runoff Adjust Factor unitless 0 0.20 0 1 limits defined by NLOS

Initial H2O L3 in/in 0.36 0.36 0.33 0.39

min/max of initial 

gravimetric soil moisture 

data by soil layer

Plant AWHC L1 in/in 0.13 0.13 0.11 0.13

min/max are the Plant 

AWHCs for a loam and silt 

loam, respectively, from 

Brady (1974) 

Initial H2O L1 in/in 0.38 0.38 0.32 0.43

min/max of initial 

gravimetric soil moisture 

data by soil layer

Initial H2O L2 in/in 0.37 0.37 0.3 0.44

min/max of initial 

gravimetric soil moisture 

data by soil layer

AWHC L3 in/in 0.13 0.13 0.11 0.13

min/max are the Plant 

AWHCs for a loam and silt 

loam, respectively, from 

Brady (1974) 

PWP 3 in/in 0.13 0.16 0.11 0.16

min/max are the PWPs 

for a loam a clay loam, 

respectively, from Brady 

(1974)

Plant AWHC L2 in/in 0.13 0.13 0.11 0.13

min/max are the Plant 

AWHCs for a loam and silt 

loam, respectively, from 

Brady (1974) 

PWP 1 in/in 0.13 0.13 0.11 0.16

min/max are the PWPs 

for a loam a clay loam, 

respectively, from Brady 

(1974)

PWP 2 in/in 0.13 0.16 0.11 0.16

min/max are the PWPs 

for a loam a clay loam, 

respectively, from Brady 

(1974)

CCFAC A unitless 0.87 0.87 0 1 limits defined by NLOS  
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Table 13. Nitrogen sub-model calibration parameters. 

Nitrogen Sub-Model Calibration

Model parameter Units
Base 

value

Calibrated 

value

Allowable 

Min.

Allowable 

Max.

Min./Max. Data 

Source

AWHC L3 in/in 0.13 0.13 0.11 0.13

min/max are the Plant 

AWHCs for a loam and silt 

loam, respectively, from 

Brady (1974) 

Bulk Density L1 g/cm
3 1.13 1.13 1.02 1.26

min/max of measured values 

by soil layer from 1997 study 

on field 9420

particle density L1 g/cm
3 2.65 2.65 2.33 2.7

min is for a no-till, silt loam, 

agricultural soil treated with 

beef cattle manure from 

Blanco-Canqui et al. (2006); 

max is the high-end of the 

standard range of particle 

densities used for computing 

porosity

Soil OrgM % C L1 unitless 28.3 25.1 23.6 29.7
min/max of all measurements 

by soil layer

particle density L3 g/cm
3 2.65 2.33 2.33 2.7

min is for a no-till, silt loam, 

agricultural soil treated with 

beef cattle manure from 

Blanco-Canqui et al. (2006); 

max is the high-end of the 

standard range of particle 

densities used for computing 

porosity

Soil OrgM % L1 unitless 7.68 7.68 6.01 9.39
min/max of all measurements 

by soil layer

particle density L2 g/cm
3 2.65 2.35 2.33 2.7

min is for a no-till, silt loam, 

agricultural soil treated with 

beef cattle manure from 

Blanco-Canqui et al. (2006); 

max is the high-end of the 

standard range of particle 

densities used for computing 

porosity

PWP 1 in/in 0.13 0.13 0.11 0.16

min/max are the PWPs for a 

loam a clay loam, 

respectively, from Brady 

(1974)

Plant AWHC L1 in/in 0.13 0.13 0.11 0.13

min/max are the Plant 

AWHCs for a loam and silt 

loam, respectively, from 

Brady (1974) 

Runoff Adjust Factor unitless 0 0.2 0 1 limits defined by NLOS

Effective precipitation unitless 0.21 0.8 0 1 limits defined by NLOS  
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Table 14. Balanced nitrogen budget from the calibrated model simulation. 
Initial N lbs N/acre % of Total Initial N Description

NH4 START ALL 11 0.21 Initial user-entered ammonium in all soil layers

NO3 START ALL 14 0.26 Initial user-entered nitrate in all soil layers

INITIAL SOIL ORGM N LS 482 9.0
Initial user-entered soil organic matter in the surface 

layer

INITIAL SOIL ORGM N L1 4838 91 Initial user-entered soil organic matter in soil layer 1

Total 5345

N Additions lbs N/acre % of Total Added N

ACCUM FERT APPLIC NH4 LS[APPLIC 1] 45 25
Accumulation of ammonium in the surface layer from 

fertilizer application 1

ACCUM FERT APPLIC NH4 LS[APPLIC 2] 60 34
Accumulation of ammonium in the surface layer from 

fertilizer application 2

ACCUM FERT APPLIC NH4 LS[APPLIC 3] 28 16
Accumulation of ammonium in the surface layer from 

fertilizer application 3

ACCUM FERT APPLIC NO3 LS[APPLIC 1] 45 25
Accumulation of nitrate in the surface layer from 

fertilizer application 1

ACCUM FERT APPLIC NO3 LS[APPLIC 2] 0.0 0.0
Accumulation of nitrate in the surface layer from 

fertilizer application 2

ACCUM FERT APPLIC NO3 LS[APPLIC 3] 0.0 0.0
Accumulation of nitrate in the surface layer from 

fertilizer application 3

Total 177

N Removed lbs N/acre % of Total Removed N

NH4 VOLAT 6.0 1.8 Ammonium volatilized from the surface layer

NO3 LEACHED 140 42 Nitrate leached out of soil layer 3

TOTAL NO3 DENITR TO N2 OR N LS -0.050 -0.015
Nitrate denitrified from the surface layer and released 

as either dinitrogen or nitrogen gas

TOTAL NO3 DENITR TO N2 OR N L1 6.4 1.9
Nitrate denitrified from soil layer 1 and released as 

either dinitrogen or nitrogen gas

TOTAL NO3 DENITR TO N20 LS 0.050 0.015
Nitrous oxide emissions from the soil surface produced 

as a by-product of the denitrification of nitrate

TOTAL NO3 DENITR TO N20 L1 5.1 1.5
Nitrous oxide emissions from soil layer 1 produced as a 

by-product of the denitrification of nitrate

N2O NITRIF LS 0.58 0.17
Ammonium nitrification to nitrous oxide for the soil 

layer

N2O NITRIF L1 0.90 0.27 Ammonium nitrification to nitrous oxide for soil layer 1

TOTAL NH4 A CROP L1 3.9 1.2 Annual crop uptake of ammonium from soil layer 1

TOTAL NO3 A CROP L1 136 41 Annual crop uptake of nitrate from soil layer 1

TOTAL NO3 A CROP L2 27 8.1 Annual crop uptake of nitrate from soil layer 2

TOTAL NH4 IMMOB LS 0.0 0.0 Ammonium immobilized from the surface layer

TOTAL NH4 IMMOB L1 0.0 0.0 Ammonium immobilized from soil layer 1

TOTAL NO3 IMMOB LS 0.0 0.0 Nitrate immobilized from the surface layer

TOTAL NO3 IMMOB L1 0.0 0.0 Nitrate immobilized from soil layer 1

TOTAL NH4 RUNOFF 0.0 0.0 Runoff of ammonium

TOTAL NO3 RUNOFF LS 0.0 0.0 Runoff of nitrate from the surface layer

TOTAL NO3 RUNOFF L1 6.1 1.8 Runoff of nitrate from soil layer 1

TOTAL NH4 ERODED 0.0 0.0 Total ammonium erosion (currently not simulated)

TOTAL NO3 ERODED LS 0.0 0.0
Total nitrate erosion from the soil surface (currently not 

simulated)

TOTAL NO3 ERODED L1 0.0 0.0
Total nitrate erosion from soil layer 1 (currently not 

simulated)

Total 332

Current N lbs N/acre % of Total Current N

NH4 END ALL 0.0 0.0 Final ammonium in all soil layers

NO3 END ALL 37 0.72 Final nitrate in all soil layers

SOIL OM N FAST LS 24 0.45
Final soil organic matter nitrogen in the fast pool of the 

surface layer

SOIL OM N SLOW LS 458 8.8
Final soil organic matter nitrogen in the slow pool of 

the surface layer

SOIL OM N FAST L1 0.0 0.0
Final soil organic matter nitrogen in the fast pool of soil 

layer 1

SOIL OM N SLOW L1 4671 90
Final soil organic matter nitrogen in the slow pool of 

soil layer 1

Total 5190

INPUTS + ADDITIONS 5522.07

REMOVED + CURRENT 5522.08

DIFFERENCE -0.01  
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Table 15. Kruskal Wallis confirmatory test results. 
P-values
variable depth plot replicate splashplate

cn 0.93 0.075 0.11 0.074

coarsefrag 0.93 NA 0.014 NA

om 0.14 0.088 0.078 0.12

moist 0.88 0.025 0.0038 0.28

soil.nh4 4.6E-07 0.99 0.75 0.94

soil.no3 0.14 0.42 0.55 0.14

variable depth plot replicate splashplate

cn A A A A

coarsefrag A NA R NA

om A A A A

moist A R R A

soil.nh4 R A A A

soil.no3 A A A A

cn = carbon to nitrogen ratio of organic matter (unitless)

coarsefrag = coarse fragment percentage (g/g)

om = organic matter content (% of dry weight)

moist = soil moisture (g/g)

soil.nh4 = soil ammonium (!g NH4-N/L)

soil.no3 = soil nitrate (!g NO3-N/L)

Accept (A) or Reject (R) H0
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Table 16. Pairwise Wilcoxon Rank Sums Test results. 

soil.nh4 by depth soil.nh4 by depth

1 2 3 4 1 2 3 4

2 0.1304 NA NA NA 2 A NA NA NA

3 0.0016 0.0016 NA NA 3 R R NA NA

4 0.0016 0.0016 0.0019 NA 4 R R R NA

5 0.0016 0.0016 0.0016 0.0140 5 R R R R

moist by plot moist by plot

103 104 223 224 311 312 331 103 104 223 224 311 312 331

104 1.00 NA NA NA NA NA NA 104 no sig. NA NA NA NA NA NA

223 0.76 0.43 NA NA NA NA NA 223 A A NA NA NA NA NA

224 1.00 0.76 1.00 NA NA NA NA 224 no sig. A no sig. NA NA NA NA

311 1.00 0.76 1.00 1.00 NA NA NA 311 no sig. A no sig. no sig. NA NA NA

312 0.46 0.22 1.00 1.00 1.00 NA NA 312 A A no sig. no sig. no sig. NA NA

331 1.00 1.00 1.00 1.00 1.00 1.00 NA 331 no sig. no sig. no sig. no sig. no sig. no sig. NA

332 1.00 1.00 1.00 1.00 1.00 1.00 1.00 332 no sig. no sig. no sig. no sig. no sig. no sig. no sig.

coarsefrag by rep coarsefrag by rep

1 2 3 1 2 3

2 0.048 NA NA 2 R NA NA

3 0.159 0.452 NA 3 A A NA

4 0.159 0.452 1.000 4 A A no sig.

moist by rep moist by rep

1 2 3 1 2 3

2 0.0068 NA NA 2 R NA NA

3 0.0101 1.0000 NA 3 R no sig. NA

4 0.0446 1.0000 1.0000 4 R no sig. no sig.

H0 = null hypothesis

coarsefrag = coarse fragment percentage (g/g)

moist = soil moisture (g/g)

soil.nh4 = soil ammonium (!g NH4-N/L)

soil.no3 = soil nitrate (!g NO3-N/L)

no sig. = no significance

P-values Accept (A) or Reject (R) H0
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Table 17. Balanced water budget from the calibrated model simulation. 
INPUTS Inches of Water % of Total Inputs Description

WATER START L1 4.6 5.1 Initial user-entered water in soil layer 1

WATER START L2 4.4 5.0 Initial user-entered water in soil layer 2

WATER START L3 7.6 8.4 Initial user-entered water in soil layer 3

WATER PRECIP 73 81 Total user-entered water as precipitation

TOTAL 90

OUTPUTS Inches of Water % of Total Outputs

WATER RUNOFF 3.5 4.6 Runoff of water

WATER LEACHED 53 68 Total water leached out of soil layer 3

TOTAL ACTUAL 

EVAPOTRANSPIRATION
21 27

The potential evapotranspiration from the 

user-entered climate data adjusted to 

account for water deficits

TOTAL 78

CURRENT Inches of Water % of Total Current

WATER L1 2.4 20 Final water in soil layer 1

WATER L2 3.5 29 Final water in soil layer 2

WATER L3 6.1 51 Final water in soil layer 3

TOTAL 12

INPUTS 89.50

OUTPUTS + CURRENT 89.48

DIFFERENCE 0.02
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Table 18. Summary statistics for the simulation values of nitrate leached for uncertainty 
analysis. 

Minimum 43

Maximum 195

Median 130

Mean 131

Standard Deviation 22

Sample Size 2000

Skewness 0.045

Kurtosis 0.019

Standard Error 0.49

95% Lower Bound 90

95% Upper Bound 175

Summary Statistics
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Table 19. Porosity and percent saturation at maximum observed soil water content. 

Soil 

Layer

Soil Layer 

Thickness 

(in)

Porosity 

(in/in)

Porosity 

(in)

Max. Observed 

Soil Water 

Content (in/in)

Max. Observed 

Soil Water 

Content (in)

Saturation (%); 

cannot exceed 

100%

L1 12 0.574 6.9 0.66 7.9 100

L2 12 0.489 5.9 0.47 5.6 96

L3 21 0.485 10.2 0.47 9.9 97  
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Table 20. Model calibration efficiency coefficients (Ef) for the wet vs. dry months. 

Model output

Ef                

October-April nwet months*

Ef              

April-October ndry months*
Overall model average -5.13 -0.53

Overall soil water sub-

model average
-5.24 -0.76

SOIL WATER L1 -4.25 14 -1.14 14

SOIL WATER L2 -8.68 5 0.02 5

SOIL WATER L3 -2.79 5 -1.17 5

Overall nitrogen sub-

model average
-5.08 -0.43

LYS NO3 L2 -0.65 5 -0.93 5

LYS NO3 L3 -0.87 5 -1.95 5

SOIL NO3 L1 -18.32 10 0.59 16

SOIL NO3 L2 0.72 6 -1.03 7

SOIL NO3 L3 0.67 6 -0.57 6

SOIL NH4 L1 -17.22 10 0.58 16

N2O 0.09 14 0.32 14

* n = the number of observations  
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Table 21. Linear regression coefficients (R2) from the correlation analysis of the simulated 
and observed values. 

Model output Uncalibrated Model Calibrated Model

Nitrate Leached L2 0.63 0.63

Nitrate Leached L3 0.80 0.84

Soil Nitrate L1 0.84 0.84

Soil Nitrate L2 0.0031 0.011

Soil Nitrate L3 0.0019 0.0092

Soil Ammonium L1 0.87 0.87

Nitrous Oxide Emissions 0.27 0.33

Soil Water L1 0.54 0.53

Soil Water L2 0.50 0.58

Soil Water L3 0.43 0.45

Average R
2

0.49 0.51

Regression coefficients (R
2
)
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Table 22. Soil hydraulic characteristics.  

Soil layer

Soil layer 

thickness (in)

Plant AWHC 

(in/in)

PWP 

(in/in)

WHC 

(in)

Bound 

Water (in)

WHC + Bound 

Water (in)

L1 12 0.13 0.13 1.56 1.56 3.12

L2 12 0.13 0.16 1.56 1.92 3.48

L3 21 0.13 0.16 2.73 3.36 6.09  
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Table 23. Hypothetical scenario descriptions.  
Hypothetical Scenario Description

1
No fertilizer and no crop for comparison to background soil nutrient and water 

conditions

2
Fertilizer applied on day 212 (7/30/04), the peak of crop growth according to 

the crop nitrate uptake curve from the calibrated simulation

3
Fertilizer applied on day 170 (6/18/04), the first day of a long stretch of low 

precipitation days

4

Fertilizer applied as a user-defined blend (24% N, 75% of N as NH4, 25% of N 

as NO3) on 3 days: 140 (5/19/04), 184 (7/2/04), and 228 (8/15/04), which 

represent crop planting, 1/3, 2/3 through crop growth, at 1/3 the total 

application amount each time (251 lbs/acre) 

5

No fertilizer and no crop run with study period weather data repeated for a 

total of 1500 simulation days (the maximum allowed by the model; equivalent 

to just over 4 years)
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Table 24. Hypothetical scenario balanced nitrogen budgets. 

Calibrated 

Output
1 2 3 4 5

Initial N lbs N/acre lbs N/acre lbs N/acre lbs N/acre lbs N/acre lbs N/acre

NH4 START ALL 11 11 11 11 11 11

NO3 START ALL 14 14 14 14 14 14

INITIAL SOIL ORGM N LS 482 482 482 482 482 482

INITIAL SOIL ORGM N L1 4838 4838 4838 4838 4838 4838

Total 5345 5345 5345 5345 5345 5345

Additions

ACCUM FERT APPLIC NH4 LS[APPLIC 1] 45 0.0 45 45 45 0

ACCUM FERT APPLIC NH4 LS[APPLIC 2] 60 0.0 60 60 45 0

ACCUM FERT APPLIC NH4 LS[APPLIC 3] 28 0.0 28 28 45 0

ACCUM FERT APPLIC NO3 LS[APPLIC 1] 45 0.0 45 45 15 0

ACCUM FERT APPLIC NO3 LS[APPLIC 2] 0.0 0.0 0.0 0.0 15 0

ACCUM FERT APPLIC NO3 LS[APPLIC 3] 0.0 0.0 0.0 0.0 15 0

Total 177 0.0 177 177 181 0

N Removed

NH4 VOLAT 6.0 0.0 20 22 1.3 0.0

NO3 LEACHED 140 145 159 138 155 577

TOTAL NO3 DENITR LS 0.0 0.0 0.050 0.010 0.050 0.0

TOTAL NO3 DENITR L1 12 8.9 11 11 11 34

TOTAL NH4 A CROP L1 3.9 0.0 14 1.9 3.4 0.0

TOTAL NO3 A CROP L1 136 0.0 106 137 136 0.0

TOTAL NO3 A CROP L2 27 0.0 15 15 21 0.0

TOTAL NH4 IMMOB LS 0.0 0.0 0.0 0.0 0.0 0.0

TOTAL NH4 IMMOB L1 0.0 0.0 0.0 0.0 0.0 0.0

TOTAL NO3 IMMOB LS 0.0 0.0 0.0 0.0 0.0 0.0

TOTAL NO3 IMMOB L1 0.0 0.0 0.0 0.0 0.0 0.0

N2O NITRIF LS 0.58 0.59 0.58 0.65 0.60 2.2

N2O NITRIF L1 0.90 0.86 0.88 0.84 0.89 3.5

TOTAL NH4 RUNOFF 0.0 0.0 0.020 0.0 0.020 0.0

TOTAL NO3 RUNOFF LS 0.0 0.0 0.0 0.0 0.0 0.0

TOTAL NO3 RUNOFF L1 6.1 7.6 6.7 6.1 6.5 28

TOTAL NH4 ERODED 0.0 0.0 0.0 0.0 0.0 0.0

TOTAL NO3 ERODED LS 0.0 0.0 0.0 0.0 0.0 0.0

TOTAL NO3 ERODED L1 0.0 0.0 0.0 0.0 0.0 0.0

Total 332 163 332 332 336 644

Current N

NH4 END ALL 0.0 0.46 0.0 0.0 0.0 0.48

NO3 END ALL 37 37 38 37 38 37

SOIL OM N FAST LS 24 24 24 24 24 22

SOIL OM N SLOW LS 458 458 458 458 458 458

SOIL OM N FAST L1 0.0 0.0 0.0 0.0 0.0 0.0

SOIL OM N SLOW L1 4671 4663 4671 4671 4671 4184

Total 5190 5182 5190 5190 5190 4701

INPUTS + ADDITIONS 5522.07 5345.07 5522.07 5522.07 5525.79 5345.07

REMOVED + CURRENT 5522.08 5345.07 5522.07 5522.08 5525.81 5345.09

DIFFERENCE -0.01 0.00 0.00 -0.01 -0.02 -0.02

Hypothetical Scenarios
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Figure 1. Field site location relative to the Abbotsford-Sumas aquifer study areas.
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Figure 2. Nitrogen gains, losses, and transformations occurring in agricultural soils.
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Figure 3. Aerial photo (1995) of the Pacific Agri-Foods Research Centre, Agassiz BC (i is

the groundwater flow gradient).
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Figure 4. Field layout used for the swine manure study conducted on the study site from

1998-2001.
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Figure 5. Field site set-up.
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Figure 6. A push-probe soil core sampler used in this study. 
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Figure 7. Ceramic cup lysimeter set-up.
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Figure 8. A non-flow-through chamber for nitrous oxide sample collection. 
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Figure 9. Gravimetric soil moisture vs. Diviner 2000 soil conductance probe soil moisture 
measurements. 
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Figure 10. Notched boxplots of initial soil data collected on March 24, 2004 by depth. Soil

nitrate and ammonium are presented as the concentration in soil extract solution ( g N/L).
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Figure 11. Notched boxplots of initial soil data collected on March 24, 2004 by replicate. Soil

nitrate and ammonium are presented as the concentration in soil extract solution ( g N/L).

1 2 3 4

10
.5

11
.0

11
.5

12
.0

12
.5

13
.0

13
.5

Replicate

C
:N

 ra
tio

 o
f o

rg
an

ic
 m

at
te

r (
%

 / 
%

)

1 2 3 4

0.
0

0.
5

1.
0

1.
5

Replicate

C
oa

rs
e 

fra
gm

en
t p

er
ce

nt
ag

e 
(%

)

1 2 3 4

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

Replicate

O
rg

an
ic

 m
at

te
r (

%
 d

ry
 w

ei
gh

t)

1 2 3 4

0.
26

0.
28

0.
30

0.
32

0.
34

0.
36

0.
38

Replicate

So
il 

m
oi

st
ur

e 
(g

/g
)

1 2 3 4

10
0

15
0

20
0

25
0

30
0

35
0

40
0

Replicate

So
il 

am
m

on
iu

m
 (µ

g 
N

H
4−

N
/L

)

1 2 3 4

80
10

0
12

0
14

0
16

0
18

0
20

0

Replicate

So
il 

ni
tra

te
 (µ

g 
N

O
3−

N
/L

)



134

Figure 12. Notched boxplots of initial soil data collected on March 24, 2004 by plot. Soil

nitrate and ammonium are presented as the concentration in soil extract solution ( g N/L).
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Figure 13. Notched boxplots of initial soil data collected on March 24, 2004 by splashplate.

Soil nitrate and ammonium are presented as the concentration in soil extract solution ( g

N/L).
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Figure 14. Scatterplots of initial soil ammonium data collected on March 24, 2004 by plot, 
replicate, depth and splashplate. Soil ammonium is presented as the concentration in soil 
extract solution (µg N/L). 
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Figure 15. Scatterplots of initial soil nitrate data collected on March 24, 2004 by plot, 
replicate, depth and splashplate. Soil nitrate is presented as the concentration in soil extract 
solution (µg N/L). 
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Figure 16. Scatterplots of initial soil carbon to nitrogen ratio (C:N) data collected on March 
24, 2004 by plot, replicate, depth and splashplate. 
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Figure 17. Scatterplots of initial soil coarse fragment percentage data collected on March 24, 
2004 by replicate and depth.  
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Figure 18. Scatterplots of initial soil organic matter content data collected on March 24, 2004 
by plot, replicate, depth and splashplate. 
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Figure 19. Scatterplots of initial soil moisture data collected on March 24, 2004 by plot, 
replicate, depth and splashplate. 
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Figure 20. Mean monthly precipitation totals for the study period (April 2004 – March 2005) 
vs. the 30-year average mean monthly totals (1974 – 2004).  
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Figure 21. Mean monthly minimum temperature for the study period (April 2004 – March 
2005) vs. the 30-year average (1974 – 2004). 
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Figure 22. Mean monthly maximum temperature for the study period (April 2004 – March 
2005) vs. the 30-year average (1974 – 2004).  
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Figure 23. Mean daily values of evapotranspiration by month for the study period (April 
2004 – March 2005) vs. the long-term mean monthly values (1991 – 2004).  
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Figure 24. Observed soil nitrate for soil layers 1 to 3 (L1 – L3), cumulative net water 
(precipitation – evapotranspiration), and precipitation. The light grey region represents the 
time span from crop planting and fertilization to crop harvesting. 
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Figure 25. Observed soil ammonium for soil layers 1 to 3 (L1 – L3), cumulative net water 
(precipitation – evapotranspiration), and precipitation. The light grey region represents the 
time span from crop planting and fertilization to crop harvesting. 
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Figure 26. Observed depth to water (DTW) in relation to the sampling depths, cumulative net 
water (precipitation – evapotranspiration), and precipitation. The light grey region represents 
the time span from crop planting and fertilization to crop harvesting. 
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Figure 27. Observed soil water for soil layers 1 -3 (L1 – L3), cumulative net water 
(precipitation – evapotranspiration), and precipitation. The light grey region represents the 
time span from crop planting and fertilization to crop harvesting. 
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Figure 28. Observed nitrate concentration in soil water, as measured in the shallow (L2) and 
deep (L3) lysimeters, and groundwater (GW), cumulative net water (precipitation – 
evapotranspiration), and precipitation. The light grey region represents the time span from 
crop planting and fertilization to crop harvesting. 
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Figure 29. Observed ammonium concentration in soil water, as measured in the shallow (L2) 
and deep (L3) lysimeters, and groundwater (GW), cumulative net water (precipitation – 
evapotranspiration), and precipitation. The light grey region represents the time span from 
crop planting and fertilization to crop harvesting. 
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Figure 30. Observed daily nitrous oxide emissions and precipitation. The light grey region 
represents the time span from crop planting and fertilization to crop harvesting. 
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Figure 31. Observed daily nitrous oxide emissions, soil moisture in soil layer 1 (L1), and 
maximum daily air temperature (T). The light grey region represents the time span from crop 
planting and fertilization to crop harvesting. 
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Figure 32. Observed daily nitrous oxide emissions and soil nitrate and ammonium in soil 
layer 1 (L1). The light grey region represents the time span from crop planting and 
fertilization to crop harvesting. 
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Figure 33. Histogram of the 2,000 simulated values of nitrate leached from the uncertainty 
analysis. 
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Figure 34. Cumulative probability of obtaining the simulated values of nitrate leached 
generated during the uncertainty analysis. 
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Figure 35. Observed values of nitrate leached, as measured in the shallow lysimeter, vs. the 
uncalibrated and calibrated simulations of nitrate leached from soil layer 2 (L2). The light 
grey region represents the time span from crop planting and fertilization to crop harvesting. 
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Figure 36. Observed values of nitrate leached, as measured in the deep lysimeter, vs. the 
uncalibrated and calibrated simulations of nitrate leached from soil layer 3 (L3). The light 
grey region represents the time span from crop planting and fertilization to crop harvesting. 
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Figure 37. Observed vs. the uncalibrated and calibrated simulations of soil nitrate in layer 1 
(L1). The light grey region represents the time span from crop planting and fertilization to 
crop harvesting. 
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Figure 38. Observed vs. the uncalibrated and calibrated simulations of soil nitrate in layer 2 
(L2). The light grey region represents the time span from crop planting and fertilization to 
crop harvesting. 
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Figure 39. Observed vs. the uncalibrated and calibrated simulations of soil nitrate in layer 3 
(L3). The light grey region represents the time span from crop planting and fertilization to 
crop harvesting.
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Figure 40. Observed vs. the uncalibrated and calibrated simulations of soil ammonium in 
layer 1. The light grey region represents the time span from crop planting and fertilization to 
crop harvesting. 
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Figure 41. Observed vs. the uncalibrated and calibrated simulations of nitrous oxide 
emissions. The light grey region represents the time span from crop planting and fertilization 
to crop harvesting. 
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Figure 42. Observed vs. the uncalibrated and calibrated simulations of soil water in layer 1 
(L1). The light grey region represents the time span from crop planting and fertilization to 
crop harvesting. 



 165 

 

 

Figure 43. Observed vs. the uncalibrated and calibrated simulations of soil water in layer 2 
(L2). The light grey region represents the time span from crop planting and fertilization to 
crop harvesting. 
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Figure 44. Observed vs. the uncalibrated and calibrated simulations of soil water in layer 3 
(L3). The light grey region represents the time span from crop planting and fertilization to 
crop harvesting. 
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Figure 45. Observed values of nitrate leached, as measured in the shallow lysimeter, vs. the 
calibrated simulation of nitrate leached from soil layer 2 (L2) (where no bar is shown, the 
observed or simulated value was equal to zero). 
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Figure 46. Observed values of nitrate leached, as measured in the deep lysimeter, vs. the 
calibrated simulation of nitrate leached from soil layer 3 (L3) (where no bar is shown, the 
observed or simulated value was equal to zero). 
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Figure 47. Observed vs. the calibrated simulation of soil nitrate in layer 1 (L1) (where no bar 
is shown, the observed or simulated value was equal to zero).
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Figure 48. Observed vs. the calibrated simulation of soil nitrate in layer 2 (L2) (where no bar 
is shown, the observed or simulated value was equal to zero). 
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Figure 49. Observed vs. the calibrated simulation of soil nitrate in layer 3 (L3) (where no bar 
is shown, the observed or simulated value was equal to zero).
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Figure 50. Observed vs. the calibrated simulation of soil ammonium in layer 1 (L1) (where 
no bar is shown, the observed or simulated value was equal to zero). 
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Figure 51. Observed vs. the calibrated simulation of nitrous oxide emissions (where no bar is 
shown, the observed or simulated value was equal to zero). 
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Figure 52. Simulated soil nitrate for layers 1 and 2 (Soil L1 & L2) and crop nitrate uptake 
(Crop L1 & L2). The light grey region represents the time span from crop planting and 
fertilization to crop harvesting. 
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Figure 53. Simulated soil ammonium for layer 1 (Soil L1) and crop ammonium uptake (Crop 
L1). The light grey region represents the time span from crop planting and fertilization to 
crop harvesting. 
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Figure 54. Simulated nitrate leached from soil layers 1 and 2 (L1 & L2) and crop nitrate 
uptake (Crop L1 & L2). The light grey region represents the time span from crop planting 
and fertilization to crop harvesting. 
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Figure 55. Simulated nitrate leached from soil layers 1 - 3 (L1 – L3), cumulative net water 
(precipitation – evapotranspiration), and precipitation. The light grey region represents the 
time span from crop planting and fertilization to crop harvesting. 
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Figure 56. Simulated nitrous oxide emissions, cumulative net water (precipitation – 
evapotranspiration), and precipitation. The light grey region represents the time span from 
crop planting and fertilization to crop harvesting. 
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Figure 57. Simulated nitrous oxide emissions and soil nitrate and ammonium in layer 1 (L1). 
The light grey region represents the time span from crop planting and fertilization to crop 
harvesting. 
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Figure 58. Simulated nitrous oxide emissions, soil water in layer 1 (L1), and maximum daily 
air temperature (T). The light grey region represents the time span from crop planting and 
fertilization to crop harvesting. 
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Figure 59. Simulated cumulative nitrous oxide (N2O) emissions from nitrification and 
denitrification in the surface layer (LS) and soil layer 1 (L1). The light grey region represents 
the time span from crop planting and fertilization to crop harvesting. 
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Figure 60. Observed vs. the calibrated simulation of soil water in layer 1 (L1) (where no bar 
is shown, the observed or simulated value was equal to zero). 
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Figure 61. Observed vs. the calibrated simulation values of soil water in layer 2 (L2) (where 
no bar is shown, the observed or simulated value was equal to zero). 
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Figure 62. Observed vs. the calibrated simulation values of soil water in layer 3 (L3) (where 
no bar is shown, the observed or simulated value was equal to zero). 
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Figure 63. Simulated soil water in layers 1-3 (L1-L3), precipitation, and net water 
(precipitation – evapotranspiration). The light grey region represents the time span from crop 
planting and fertilization to crop harvesting. 
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Figure 64. Simulated nitrate leached from the bottom of the soil profile (i.e. from the bottom 
of soil layer 3). The light grey region represents the time span from crop planting and 
fertilization to crop harvesting. 
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Figure 65. Simulated nitrate leached from soil layers 1-3 (L1-L3), precipitation, and net 
water (precipitation – evapotranspiration). The light grey region represents the time span 
from crop planting and fertilization to crop harvesting. 
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Figure 66. Simulated soil nitrate in layers 1-3 (L1-L3), precipitation, and net water 
(precipitation – evapotranspiration). The light grey region represents the time span from crop 
planting and fertilization to crop harvesting. 
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Appendix A. Quality Control 

Data quality control measures closely follow the procedures used by the IWS as detailed in 

the Abbotsford-Sumas Final Monitoring Report 2002/2004 (Mitchell et al., 2005). The 

control measures applicable to this project are explained here using quality control data 

collected during analysis of the laboratory data. Analytical methods, detection limits, and 

analytical precision are listed in Table A2. Sample container, storage, and holding time 

protocol (following IWS standard operating procedures) are listed in Table A1.  

The following quality control measures were used for all analyses conducted at the IWS 

laboratory. Note that the data used to generate the statistics are uncensored for values below 

the detection limits. Some ammonium values are negative due to errors in the assignment of 

the location of the zero value for the calibration curve. Note that the quality control chart 

labels state ammonia when it is ammonium that was actually measured. The control charts 

were created with a program called QCCharts, which communicates with the statistical 

software R. QCCharts, created by Geoffrey Matthews, a WWU computer science professor, 

was designed to work mainly with surface water data; therefore, ammonia is typically the 

measured variable. The preset ammonia plot titles could not be changed for this study.  

Laboratory duplicates 

Laboratory duplicates are a second portion of the original sample analyzed at the same time 

as the original. Duplicate samples were analyzed for at least 10% of nitrate and ammonium 

samples for each sample run. They were used to assess analytical precision over the time 

period of this project (March 2004 through April 2005) using control charts (Figures A1 & 

A2). Upper and lower warning limits (± 2 standard deviations) and upper and lower control 
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limits (± 3 standard deviations) were developed using training data from the Abbotsford-

Sumas Groundwater Monitoring Project (July 2002 through June 2004). These limits were 

then used to assess the performance of the results from this project. 

The control charts indicated that there was a slight improvement in analytical precision 

for nitrate during the period of this project with no values falling outside the warning or 

control limits, whereas, there were a few out of control values recorded in the training data 

set.  The control charts for ammonium indicated there was little change in analytical 

precision during this project. Two values fall just outside the lower control limit for 

ammonium, but these are not a concern since they are below the detection limit and also 

since the nature of the samples analyzed in the two projects was slightly different: the 

Abbotsford-Sumas samples were all from groundwater wells whereas the samples for this 

project were either from vadose zone lysimeters or soil extractions.  

Field duplicates 

Field duplicates are a second field sample collected at the same place and at the same time as 

the original sample. One field duplicate was collected for each sampling event for all water 

samples. Field duplicates are used to assess variability in field sampling. The absolute mean 

difference and detection limits are shown on the charts comparing the field duplicate 

concentration to the original sample concentration (Figures A3 & A4). Since the data are 

uncensored, there are some negative ammonium values. 

There is a linear (1:1) trend to the original samples and the field duplicates for nitrate and 

ammonium. The absolute mean difference for ammonium is below the detection value 

suggesting there is no significant variability in the field sampling method as it pertains to 

ammonium sample collection. The absolute mean difference for nitrate (245 µg-N/L) is 
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almost one magnitude greater than the analytical detection limit (27.4 µg-N/L), but greater 

than one magnitude less than the average field duplicate sample concentration (8073 µg-

N/L). This suggests that there is some variability in the lysimeter and/or piezometer sampling 

method as it pertains to nitrate sample collection. Some possibilities include natural field 

variation between the collection of samples or possible contamination between the collecting 

of each individual sample or in the sample containers. This variability will constrain the 

reporting confidence of nitrate in water values to ±0.245 mg NO3-N/L. 

Field blanks 

Field blanks are bottles of ultra-pure water filled in the laboratory and then taken into the 

field and subjected to the same field and laboratory analysis conditions as all the field 

samples. Field blanks are used to identify contamination from sample bottles, sample 

handling, or sample preparation in the laboratory.  

Field blanks for nitrate were all below laboratory detection limits. For ammonium, 27% 

of filed blanks were above laboratory detection limits with the greatest measured 

concentration in an ammonium field blank equal to 0.14 mg NH4
+-N/L. This variability will 

constrain the reporting confidence of ammonium in water values to ±0.14 mg NH4
+-N/L. The 

median ammonium field blank was below detection, although, the mean field blank 

concentration was slightly above detection. If the one outlier is removed, the mean is well 

below the detection limit. 

Laboratory check standards 

Laboratory check standards are samples of ultra-pure water to which a known concentration 

of the analyte of interest has been added. They are used to evaluate laboratory performance 
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and analyte recovery in a blank matrix (APHA, 1998). Two check standards of 20% and 80% 

of the calibration standard range were included with each analytical run.  

Control charts were used to assess analytical accuracy and precision using training data 

from the Abbotsford-Sumas Groundwater Monitoring Project (Figures A5 & A6). The 

control charts show that laboratory performance and analyte recovery was acceptable during 

this project. There were no values outside of control limits and only a few values outside the 

warning limits. The values outside the warning limits were deemed acceptable due to the 

different nature of the samples used to develop the control limits and the test data 

(groundwater versus vadose zone water or soil extract). 

Laboratory spike recoveries 

A laboratory spike is an additional portion of the original sample to which a known 

concentration of the analyte of interest is added. They are used to evaluate analyte recovery 

in a sample matrix (APHA, 1998). Laboratory spikes were analyzed at least once a run and 

every 30 samples thereafter.  

Control charts were used to assess analyte recovery using training data from the 

Abbotsford-Sumas Groundwater Monitoring Project (Figures A7 & A8). The control charts 

show acceptable analyte recovery for this project with only a few values falling outside the 

warning and control limits. The values outside the limits were deemed acceptable due to the 

different nature of the samples used to develop the control limits and the test data 

(groundwater versus vadose zone water or soil extract). Also, a common objective is ±20% 

recovery and all values fell within that range. 
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Table A1. Sample container, storage, and holding times.  

Parameter

APHA Storage/ 

Max Holding Time Container

IWS Storage/ 

Holding Time

Ammonia

Filter, cool 4ºC, 

H2SO4 to pH<2, 28 

days

Nalgene

Filter, digest 

within 8 hrs and 

hold up to 28 

days

Nitrate

Filter, cool 4ºC, 

H2SO4 to pH<2, 1-2 

days

Nalgene

Filter, digest 

within 8 hrs and 

hold up to 60 

days  
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Table A2. Analytical methods, detection limits, and precision. 

 

Parameter Method Description Precision Detection Limit

Ammonia (ug-N/L) APHA 4500-NH3 G (1998) Automated phenate +-17.6 11.8

Nitrate+nitrite (ug-N/L) APHA 4500-NO3 I (1998) Automated Cd reduction +-30.2 27.4
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Figure A1. Control chart for nitrate laboratory duplicates. Upper/lower acceptance limits (± 2

std. dev. from mean pair difference) and upper/lower warning limits (± 3 std. dev. from mean

pair difference) were calculated using data from the Abbotsford-Sumas Water Quality

Monitoring Project.
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Figure A2. Control chart for ammonium laboratory duplicates. Upper/lower acceptance limits

(± 2 std. dev. from mean pair difference) and upper/lower warning limits (± 3 std. dev. from

mean pair difference) were calculated using data from the Abbotsford-Sumas Water Quality

Monitoring Project.
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Figure A3. Nitrate field duplicates. Diagonal reference line shows a 1:1 relationship. The 
absolute mean is the absolute difference between the original and field duplicate sample 
concentrations divided by the number of observations. The detection limit of 27.4 µg-N/L is 
not shown. 
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Figure A4. Ammonium field duplicates. Diagonal reference line shows a 1:1 relationship. 
The absolute mean is the absolute difference between the original and field duplicate sample 
concentrations divided by the number of observations. 
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Figure A5. Control chart for nitrate check standards. Upper/lower acceptance limits (± 2 std.

dev. from mean pair difference) and upper/lower warning limits (± 3 std. dev. from mean pair

difference) were calculated using data from the Abbotsford-Sumas Water Quality Monitoring

Project.
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Figure A6. Control chart for ammonium check standards. Upper/lower acceptance limits (± 2

std. dev. from mean pair difference) and upper/lower warning limits (± 3 std. dev. from mean

pair difference) were calculated using data from the Abbotsford-Sumas Water Quality

Monitoring Project.
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Figure A7. Control chart for nitrate spike recoveries. Upper/lower acceptance limits (± 2 std.

dev. from mean pair difference) and upper/lower warning limits (± 3 std. dev. from mean pair

difference) were calculated using data from the Abbotsford-Sumas Water Quality Monitoring

Project.
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Figure A8. Control chart for ammonium spike recoveries. Upper/lower acceptance limits (± 2

std. dev. from mean pair difference) and upper/lower warning limits (± 3 std. dev. from mean

pair difference) were calculated using data from the Abbotsford-Sumas Water Quality

Monitoring Project.
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Appendix B. Changes Made to NLOS 

The following updates, improvements, or additions were made to NLOS10 and saved as 

model version NLOS11: 

• Max/min allowable inputs were changed for various soil characteristic input tables in 

order to allow the input of field data for this project. Min/max for variables used in 

the Monte Carlo simulations were set to those min/max; 

• The model run stats were set to run from day 84 to 482; 

• The default (original) input values were reset to use the input data for this study; 

• Tables and counters were added to track the parameters involved in the water and N 

budgets; 

• The algorithms for tracking ACCUM FERT APPLIC NH4/NO3 LS/L1 were updated 

to include the new method of allowing multiple fertilizer applications on the same 

day (as described below); 

• Changed the name of “Crop moisture fraction (%)” list input device to “Crop 

moisture fraction”; 

• Removed inputs from their respective list input devices that will be used in Monte 

Carlo simulation. Created new list input devices for Monte Carlo variables; 

• Created a Monte Carlo algorithm; 

• Changed CN Before, During, and After from their defaults of 87, 79, and 79, 

respectively to 86, 78, and 86, which were determined to be the best-case values for 

the field conditions. 
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Updates to allow multiple fertilizer applications on the same day. 

The basic problem was that the Fert_type_applic_date is an array over FANumber (fertilizer 

application number, currently ranges up to 15), and FTcharAD is an array over 

Fertilizer_Type (the set of possible fertilizer types, currently ranges up to 15, with the last 5 

being user-defined).  In the previous model, fert_type_applied was a scalar sum of the 

Fert_type_applic_date array (thus combining all applications for the current date).  In the 

revision, fert_type_applied is removed, and a new “converter” 2-D array is created to allow 

transfer of the values into a Fertilizer_Type-based array, FTcharAD. 

 
EXAMPLE   

Need to apply 3 fertilizers on a given day (140), Ammonium Nitrate (4), Urea (1), and 

Monoammonium Phosphate (7). 

 

Select_fert_date: 

FANumber: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

140 140 140 0 0 0 0 0 0 0 0 0 0 0 0 
 

Select_fert_type: 

FANumber: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
4 1 7 0 0 0 0 0 0 0 0 0 0 0 0 

 

Fert_NH4_applic_date (on day 140, zeros otherwise): 

Fertilizer_Type: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0.46 0 0 0.17 0 0 0.11 0 0 0 0 0 0 0 0 
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Fert_type_applic_date (on day 140, zeros otherwise): 

FANumber: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
4 1 7 0 0 0 0 0 0 0 0 0 0 0 0 

 

FTcharAD needs to look like this on day 140 (and zeros otherwise): 

Fertilizer_Type: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 

 

The original algorithm would sum the Fert_Type_applic_date array (giving 12), and produce 

this on day 140: 

Fertilizer_Type: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

 

The new algorithm uses a temporary 2-D array, fert_type_converter, to convert from 

FANumber to Fertilizer_Type: 

  FANumber: 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fertilizer_Type: 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

This is summed for each row to achieve the correct FTcharAD array. 
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For actual application of the fertilizer onto a layer, Fertilizer_Type-based 

Fert_NH4_applic_date was converted into the FANumber-based Fert_NH4_applic_LS (as 

well as equivalent calculations for NO3, and Layer 1).  Previously, this was accomplished by 

doing an array sum over the values in Fert_NH4_applic_date, which produces incorrect 

values.  The revision uses the converter above, in combination with Fert_NH4_applic_date to 

produce a new 2-D converter array: 

  FANumber: 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 .46 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 .17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 .11 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fertilizer_Type: 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

In the formula for Fert_NH4_applic_LS, this is summed for each FANumber, giving an array 

like this: 

FANumber: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

.17 .46 .11 0 0 0 0 0 0 0 0 0 0 0 0 
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CHANGES MADE TO THE FERTILIZER APPLICATION SUB-MODEL 
Sector = Fertilizer Application 
 
Removed fert_type_applied 
 
Original Algorithm: 
(Variable type: scalar) 

ARRAYSUM(Fert_type_applic_date[*]) 

 

Created fert_type_converter for use by FTcharAD in order to apply multiple fertilizers on 

one day. 

 
Algorithm: 
(Variable type: 2-D Array over FANumber and Fertilizer_Type) 

fert_type_converter[FANumber, Fertilizer_Type] = IF 

(Fert_type_applic_date [FANumber] = 

Fertilizer_Code[Fertilizer_Type]) THEN 1 ELSE 0 

 
Documentation: 
This is a utility 2-D variable that is used to transform the fertilization information from the 
FANumber-based Fert_type_applic_date  variable (one array element for each FANumber, 
with the value of the fertilizer type to be applied on the current day) into the Fertilizer_Type-
based FTcharAD variable (one array element for each Fertilizer_Type, with a value of 1 if 
that fertilizer type is to be applied on the current day, and 0 if not). 
 
The structure of this variable is a 2-D array, with FANumber columns and Fertilizer-Type 
rows, with a 1 in the element if that FANumber consists of that Fertilizer_Type on the current 
day, and zero if not.  This allows FTcharAD to be calculated correctly. 
 
This replaces an array sum over the values in Fert_type_applic_date . 
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Changed how FTcharAD is calculated so that multiple fertilizer applications may be made 

on one day.  

 
Original algorithm: 
(Variable type: 1-D Array over Fertilizer_Type) 

FTcharAD[fertilizer_Type] = IF Fert_type_applied = 0 THEN 0 ELSE 

IF Fert_type_applied =Fertilizer_Code[Fertilizer_Type] THEN 1 

ELSE 0 

 
Updated algorithm: 
(Variable type: 1-D Array over Fertilizer_Type) 

FTcharAD[fertilizer_Type] = ARRAYSUM(fert_type_converter[*, 

Fertilizer_Type]) 

 
Documentation (unchanged): 
FTcharAD creates an array with a value of 1 in the position for which type of fertilizer is 
applied on that date.  This is then used to calculate either NH4-N and/or NO3-N that is 
applied on that date by using the NO3 and NH4 characteristics of each fertilizer type. 
Unitless switch of either 0 or 1. dh Jan 2001. 
 
Sector = Fertilizer Mineral N 
 

Created fert_NH4_applic_date_converter for use by Fert_NH4_applic_LS 
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Algorithm: 
(Variable type: 2-D Array over FANumber and Fertilizer_Type) 

fert_NH4_applic_date_converter[FANumber, Fertilizer_Type] = 

fert_type_converter[FANumber,Fertilizer_Type]*Fert_NH4_applic_da

te[Fertilizer_Type] 

 
Documentation: 
This takes the 2-D array in fert_type_converter, multiplies the values by the fraction of 
product that is NH4 so that the array can be rolled up into an FANumber-based array of 
NH4 fractions in the Fert_NH4_applic_LS formula. In other words, we need to make a 1-D 
array of FANumber elements, each of which is the NH4 fraction for that fertilizer application 
on the current date. 
 

Updated Fert_NH4_applic_LS to roll up the NH4 converter array by Fertilizer_Type 

 
Original Algorithm: 
(Variable type: 1-D array over FANumber) 

Fert_NH4_applic_LS[FANumber] = IF  

Select_fert_applic_method[FANumber]  < 5  THEN  

Fert_amount_applic_date[FANumber] * 

ARRAYSUM(Fert_NH4_applic_date[*])  ELSE  0   

 
Original Documentation: 
Fert_NH4_applic_LS is application of fertilizer NH4 applied to the soil surface. Method of 
fertilizer application (Fert_method_applic_date) is tested to see if the fertilizer is applied to 
the surface or soil layer 1. If the method of fertilizer application is 1 (none applied )  or 
fertilizer is applied to the surface, that is method < 5 (2=surface broadcast, 3=surface 
banded ,4=surface dribbled) then the application to the surface is calculated from the 
product of the total quantity of fertilizer applied (Fert_amount_applic_date) and the NH4-N 
content of that applied fertilizer (Fert_NH4_applic_date), otherwise the value is 0 since 
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either the application is 0 or fertilizer is applied directly to soil layer 1. Units lbs N / acre / 
day.  dh Jan 2001. 
 
Updated Algorithm: 
(Variable type: 1-D array over FANumber) 

IF  Select_fert_applic_method[FANumber]  < 5  THEN   

Fert_amount_applic_date[FANumber] * 

ARRAYSUM(Fert_NH4_applic_date_converter[FANumber,*])  ELSE  

0 

 
Updated Documentation: 
Removed original ARRAYSUM and replaced with updated ARRAYSUM to get a FANumber-
based 1-D array of NH4 fractions. 


	Signature pages.pdf
	Title page.pdf
	Body text.pdf
	Tables.pdf
	Figures.pdf
	Appendices.pdf

